

MACHINE LEARNING

010001010111010001101000
011001010110110100100000
010000010110110001110000
011000010111100101100100
011010010110111000001101
000010100100110101100001
011000110110100001101001
011011100110010100100000
010011000110010101100001
011100100110111001101001
011011100110011100001101
000010100101010001101000
011001010010000001001110
011001010111011100100000
010000010100100100001101
00001010

The MIT Press Essential Knowledge Series

A complete list of the titles in this series appears at the back of this book.

MACHINE LEARNING
REVISED AND UPDATED EDITION

ETHEM ALPAYDIN

The MIT Press | Cambridge, Massachusetts | London, England

© 2021 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form
by any electronic or mechanical means (including photocopying, recording,
or information storage and retrieval) without permission in writing from
the publisher.

This book was set in Chaparral Pro by New Best-set Typesetters Ltd.

Library of Congress Cataloging-in-Publication Data

Names: Alpaydın, Ethem, author.
Title: Machine learning / Ethem Alpaydın.
Description: Revised and updated edition. | Cambridge, Massachusetts :

The MIT Press, [2021] | Series: The MIT Press essential knowledge series |
Includes bibliographical references and index.

Identifiers: LCCN 2020033697 | ISBN 9780262542524 (paperback)
Subjects: LCSH: Machine learning. | Artificial intelligence.
Classification: LCC Q325.5 .A47 2021 | DDC 006.3/1—dc23
LC record available at https://lccn.loc.gov/2020033697

10  9  8  7  6  5  4  3  2  1

https://lccn.loc.gov/2020033697

CONTENTS

Series Foreword  vii

Preface  ix

1	 Why We Are Interested in Machine Learning  1

2	 Machine Learning, Statistics, and Data Analytics  35

3	 Pattern Recognition  71

4	 Neural Networks and Deep Learning  105

5	 Learning Clusters and Recommendations  143

6	 Learning to Take Action  159

7	 Challenges and Risks  183

8	 Where Do We Go from Here?  201

Glossary  227

Notes  239

References  243

Further Reading  247

Index  249

SERIES FOREWORD

The MIT Press Essential Knowledge series offers accessible,
concise, beautifully produced pocket-size books on topics
of current interest. Written by leading thinkers, the books
in this series deliver expert overviews of subjects that
range from the cultural and the historical to the scientific
and the technical.

In today’s era of instant information gratification, we
have ready access to opinions, rationalizations, and super-
ficial descriptions. Much harder to come by is the founda-
tional knowledge that informs a principled understanding
of the world. Essential Knowledge books fill that need.
Synthesizing specialized subject matter for nonspecialists
and engaging critical topics through fundamentals, each
of these compact volumes offers readers a point of access
to complex ideas.

PREFACE

In November 2019, South Korean Go master Lee Se-dol
announced that, after a career of twenty-four years, he
was retiring from professional Go competitions. In 2016,
he had played a five-game series against a computer pro-
gram named AlphaGo, which he lost 1 to 4. Since then,
later versions of AlphaGo had gotten even better, so much
so that when announcing his retirement, Se-dol said that,

“With the debut of AI in Go games, I’ve realized that I’m
not at the top even if I become the number one through
frantic efforts. Even if I become the number one, there is
an entity that cannot be defeated.”1

The ancient strategy game Go had long been believed
to be beyond the capability of AI. In 1997, when the chess-
playing program Deep Blue defeated the reigning world
champion Garry Kasparov, researchers believed that it
would take another generation for the same to happen
with Go. While the chess board is 8 × 8, the Go board
is 19 × 19—a larger board meaning so many more pos-
sible positionings of the pieces on the board exist, hence
so many more different ways of playing the game that a
game-playing computer program should be able to handle.

The crucial difference between Deep Blue and AlphaGo
was the shift from programming to learning. Whereas
Deep Blue was programmed by human experts to play as

x   PREFACE

well as possible, AlphaGo learned to play well by playing
many games and updating itself using this experience,
favoring moves and strategies that led to winning the
game and penalizing those that led to losses.

How this is done is the topic of this book, and as we
will see, game playing is only one of the many domains
where we have witnessed this unforeseen sudden jump
in ability through learning. In the last two decades, using
systems that learn, we have seen drastic improvements
in accuracy in various applications that have since been
successfully commercialized. We now have programs that
can recognize people from their faces, understand spoken
speech, recommend a movie, translate text from one lan-
guage to another, and drive a car—all of which have been
made possible by machine learning.

Once, it used to be the programmer who had to come
up with a way to solve the problem; the sequence of opera-
tions that needs to be carried out is named an algorithm.
The algorithm is then coded as a program using a program-
ming language, and the program is executed on a computer.
In a learning program, on the other hand, the programmer
specifies how the data (collected through experience) is
used to update the program so as to improve performance;
it is the data that determines the final form of the program.

In a programmed system, the programmer knows at
the time of writing the program how the system is going to
behave in any situation. The program has no intelligence

	 PREFACE    xi

by itself; it is just a machine that is hardwired to dupli-
cate the intelligence of the programmer. It just does what
the programmer would do; its only advantage may be its
speed; it is no more than a calculator.

With learning, however, how a system will act in a sit-
uation is the result of the interaction between the learning
program and the data, and as we will see, the final sys-
tem very much depends on the quantity and quality of the
data (i.e., how well the data covers all possible scenarios).
In such a case, how a trained program will act cannot be
foreseen by the programmer at the time of writing the pro-
gram, and as such it can be said that a program that has
learned from data has acquired intelligence beyond that of
the programmer.

In retrospect, it is not surprising that the learning pro-
gram AlphaGo defeated Lee Se-dol. AlphaGo played (and
learned from) many more games than any human being
can play in a lifetime. Likewise, a doctor gains experience
from their own patients only; a learning medical diagnosis
system can be trained with the collection of patients of
thousands of doctors. Similarly, a car that learns to drive
itself can be trained with many more and much more
varied scenarios than even the most experienced human
driver can encounter in a lifetime. That is the advantage
of collecting big data and analyzing it to infer knowledge.

Of course, learning from data is not new; it is at the
heart of science. In the past, scientists like Galileo and

xii   PREFACE

Kepler designed experiments to make observations and
collected data; they then came up with laws that explain
those data. In medicine, cures for many diseases were
found by collecting information from patients and analyz-
ing them for commonalities and differences. But we are
now at a point where we want to automate this process of
going from data to knowledge, because now we have much
more data and many more application domains.

Since the advent of computers in the middle of the last
century, our lives have become increasingly computerized
and digital. Computers are no longer just the numeric cal-
culators they once were. Databases and digital media have
taken the place of printing on paper as the main medium
of information storage, and digital communication over
computer networks supplanted the post as the main mode
of information transfer. First with the personal computer
with its easy-to-use graphical interface, and then with the
phone and other smart devices, the computer has become
a ubiquitous device, a household appliance just like the
TV or the microwave. Currently, all sorts of information,
not only numbers and text but also image, video, audio,
and so on, are stored, processed, and—thanks to online
connectivity—transferred digitally. All this digital proc-
essing results in a lot of data, and it is this surge of data
that is mainly responsible for triggering the widespread
interest in data analysis and machine learning.

	 PREFACE    xiii

For many applications—from vision to speech, from
translation to robotics—we were not able to devise very
good algorithms despite decades of research beginning in
the 1950s. But for all these tasks, it is easy to collect data,
and now the idea is to learn the algorithms for these auto-
matically from data, replacing programmers with learning
programs. This is the niche of machine learning, and it is
not only that the data has gotten bigger in these last two
decades, but also that the theory of machine learning to
process that data to turn it into knowledge has advanced
significantly.

Once, if you were smart, you invented a new algo-
rithm; now, if you are smart, you find a new source of data,
possibly first by writing the app to collect it. In the past,
computer science advanced one algorithm at a time; now
information technology advances one app at a time.

Today, in different types of business, from retail and
finance to manufacturing, as our systems are computer-
ized, more data is continuously generated and collected.
This is also true in various fields of science, from astron-
omy to biology. In our everyday lives too, as digital tech-
nology increasingly infiltrates our daily existence, as our
digital footprint deepens, not only as consumers and users
but also through social media, an increasingly larger part
of our lives is recorded and becomes data. Whatever its
source—business, scientific, or personal—data that just
lies dormant passively is not of any use, and smart people

xiv   PREFACE

have been finding new ways to make use of that data and
turn it into a useful product or service. In this transforma-
tion, machine learning is playing a more significant role.

Our belief is that behind all this seemingly complex
and voluminous data, there lies a simple explanation. That
although the data is big, it can be explained in terms of a
relatively simple model with a small number of hidden fac-
tors and their interaction. Think about millions of custom-
ers who buy thousands of products online or from their
local supermarket every day. This implies a very large data-
base of transactions; but what saves us and works to our
advantage is that there is a pattern to this data. People
do not shop at random. A person throwing a party buys
a certain subset of products, and a person who has a baby
at home buys a different subset; there are hidden factors
that explain customer behavior. It is this inference of a
hidden model—namely, the underlying factors and their
interaction—from the observed data that is at the core of
machine learning.

Machine learning is not just the commercial applica-
tion of methods to extract information from data; learn-
ing is also a requisite of intelligence. An intelligent system
should be able to adapt to its environment; it should learn
not to repeat its mistakes but to repeat its successes. Pre-
viously, researchers used to believe that for artificial intel-
ligence to become reality, we needed a new paradigm, a
new type of thinking, a new model of computation, or

	 PREFACE    xv

a whole new set of algorithms. Taking into account the
recent successes in machine learning in various domains,
we can now claim that what we need is not a new set of
specific algorithms but a lot of example data and suffi-
cient computing power to run the learning methods on
that much data, bootstrapping the necessary algorithms
from data.

It appears that tasks such as machine translation and
planning can be solved with learning algorithms that are
relatively simple but trained on large amounts of exam-
ple data. Recent successes with “deep learning” (e.g., the
AlphaGo program) support this claim. Intelligence seems
not to originate from some outlandish formula, but
rather from the patient, almost brute force use of simple,
straightforward algorithms.

As technology develops and we get faster computers
and more data, learning algorithms can be expected to
generate a slightly higher level of intelligence, which will
find use in a new set of slightly smarter devices and soft-
ware. It will not be surprising if this type of learned intel-
ligence reaches the level of human intelligence some time
before this century is over.

I believe that this is the perspective from which we
can assess the meaning of Lee Se-dol’s retirement. Some
people may find him unnecessarily touchy; athletes did
not stop running marathons when cars were invented.
Playing games such as chess or Go will always be a test of

xvi   PREFACE

a person’s ability to focus and strategize. People are not
going to stop playing these games just because a computer
can beat them; on the contrary, game-playing computer
programs have the potential to teach them how to play
those games better.

We can see Lee Se-dol’s resignation as another step
toward humanity no longer being either the standard by
which intelligence is measured or the maximum intelli-
gence that can be attained. What we have been encoun-
tering in the last half century as digital technology has
advanced one milestone at a time (and I believe AlphaGo
is one such milestone) is similar to the Copernican revolu-
tion where the earth was demoted from being the center
of the heavens to simply one of the planets in the solar
system.

We are systematically noticing that what we have with
our brains is only one way of being intelligent, and not
necessarily the best one at that. It is amusing that in 2016,
when Lee Se-dol lost to AlphaGo, this made headlines all
around the world because this was the first time a com-
puter program defeated the best human player; when he
retired in 2019, the news article referred to him as “the
only human to defeat the AI Go player AlphaGo.”

The aim of this book is to give the reader an overall idea
about what machine learning is, the basics of some impor-
tant learning algorithms, and a set of example applications.

	 PREFACE    xvii

The book is intended for a general readership, and only
the essentials of the learning methods are discussed with-
out any mathematical or programming details. The book
does not cover any of the machine learning applications
in much detail either; a number of examples are discussed
just enough to give the fundamentals without going into
the particulars.

For more information on machine learning algorithms
and applications, the reader can refer to my textbook on
the topic, on which this book is based: Ethem Alpaydın,
Introduction to Machine Learning, 4th ed. (Cambridge, MA:
MIT Press, 2020).

The content is organized as follows:
We start by briefly discussing the evolution of com-

puter science and its applications in chapter 1. This is nec-
essary to place in context the current state of affairs that
created the interest in machine learning—namely, how
the digital technology advanced from number-crunching
mainframes to desktop personal computers and later on
to smart devices that are online and mobile. This chapter
shows how we have ended up with so much data.

Chapter 2 introduces the basics of machine learning
and discusses how it relates to model fitting and statistics
on some simple applications.

Most machine learning algorithms are supervised,
and in chapter 3, we discuss how such algorithms are used
for pattern recognition, such as faces and speech.

xviii    PREFACE

Chapter 4 covers artificial neural networks inspired
from the human brain, how they can learn, and how “deep,”
multilayered networks can learn hierarchies at different
levels of abstractions.

Another type of machine learning is unsupervised,
where the aim is to learn associations between instances. In
chapter 5, we consider customer segmentation and learn
ing recommendations as popular applications.

Chapter 6 is on reinforcement learning where an auto
nomous agent—for example, a self-driving car—learns to
take actions in an environment to maximize reward and
minimize penalty.

As any new technology, since we have started using
machine learning in the real world, we have started to face
its concomitant challenges and risks. So this new edition
has a new chapter, chapter 7, for topics that have become
increasingly important since 2016 when the first edition
appeared. These include ethical and legal implications of
automated decision making, concerns over data privacy
and security, possible biases in training data, the need for
explainability, and others.

Chapter 8 concludes by discussing some future direc-
tions and the newly proposed field of “data science” that
also encompasses high-performance cloud computing.

This book aims to give a quick introduction to what is
being done today in machine learning, and my hope is to
trigger the reader’s interest in thinking about what can be

	 PREFACE    xix

done in the future. Machine learning is certainly one of
the most exciting scientific fields today, advancing tech-
nology in various domains, and it has already generated a
set of impressive applications affecting all walks of life. I
have enjoyed very much writing this book; I hope you will
enjoy reading it too!

I am grateful to the anonymous reviewers for their
constructive comments and suggestions. As always, it has
been a pleasure to work with the MIT Press and I would
like to thank the anonymous reviewers, Kathleen Caruso,
and Marie Lufkin Lee for all their support.

1

WHY WE ARE INTERESTED IN
MACHINE LEARNING

The Power of the Digital

Some of the biggest transformations in our lives in the
last half century are due to computing and digital technol-
ogy. The tools, devices, and services we had invented and
developed in the centuries before have been increasingly
replaced by their computerized “e-” versions, and we in
turn have been continuously adapting to this new digital
environment.

This transformation has been very fast: once upon a
time—fifty years ago is mythical past in the digital realm
where things happen at the speed of light—computers
were expensive and only very large organizations, such as
governments, big companies, universities, research cen-
ters, and so on, could afford them. At that time, only they

2   chapter 1

had problems difficult enough to justify the high cost of
procuring and maintaining a computer. Computer “cen-
ters,” in separate floors or buildings, housed those power-
hungry behemoths, and inside large halls, magnetic tapes
whirred, cards were punched, numbers were crunched,
and bugs were real bugs.

As computers became cheaper, they became available
to a larger selection of the population and in parallel, their
application areas widened. In the beginning, computers
were nothing but calculators—they added, subtracted,
multiplied, and divided numbers to get new numbers.
Probably the major driving force of the computing tech-
nology is the realization that every piece of information
can be represented as numbers. This in turn implies that
the computer, which until then was used to process num-
bers, can be used to process all types of information.

To be more precise, a computer represents every
number as a particular sequence of binary digits (bits) of
0 or 1, and such bit sequences can also represent other
types of information. For example, “101100” can be used
to represent the decimal 44 and is also the code for the
comma; likewise, “1000001” is both 65 and the uppercase
letter ‘A’.1 Depending on the context, the computer pro-
gram manipulates the sequence according to one of the
interpretations.

Actually, such bit sequences can stand for not only
numbers and text, but also other types of information—for

	 Why We Are Interested in Machine Learning    3

example, colors in a photo or tones in a song. Even com-
puter programs are sequences of bits. Furthermore, and
just as important, operations associated with these types
of information, such as making an image brighter or find-
ing a face in a photo, can be converted to commands that
manipulate bit sequences.

Computers Store Data

The power of the computer lies in the fact that every piece
of information can be represented digitally—that is, as
a sequence of bits—and every type of information proc-
essing can be written down as computer instructions that
manipulate such digital representations.

One consequence of this emerged in the 1960s with
databases, which are specialized computer programs that
store and manipulate data, or digitally represented infor-
mation. Peripheral devices, such as tapes or disks, store
bits magnetically, and hence their contents are not erased
when the computer is switched off.

With databases, computers have moved beyond proc-
essing and have become repositories of information using
the digital representation. In time, the digital medium has
become so fast, cheap, and reliable that it has supplanted
printing on paper as humanity’s main means of informa-
tion storage.

4   chapter 1

After the invention of the microprocessor and paral-
lel advances in miniaturization and decreasing costs, per-
sonal computers became increasingly available starting in
the early 1980s. The personal computer has made comput-
ing accessible to small businesses, but most important the
personal computer was small and cheap enough to be a
household appliance. You did not need to be a large com-
pany; the computer could help with your life too. The per-
sonal computer confirmed that everyone had tasks that
are computer-worthy, and the growth of applications fol-
lowed this era of democratization of digital technology.

Graphical user interfaces and the mouse made the per-
sonal computer easy to use. We do not need to learn pro-
gramming, or memorize commands with a difficult syntax,
to be able to use the computer. The screen is a digital simu-
lacrum of our work environment displaying a virtual desk-
top, with files, icons, and even a trash can, and the mouse
is our virtual hand that picks them up to read or edit
them.

The software for the personal computer in parallel
has moved from commercial to personal applications by
manipulating more types of data and making more of our
lives digital. We have a word processor for our letters and
other personal documents, a spreadsheet for our house-
hold calculations, and software for our hobbies such as
music or photography; we can even play games if we want
to! Computing has become everyday and fun.

	 Why We Are Interested in Machine Learning    5

The personal computer with its pleasant and inviting
user interface coupled with a palette of everyday applica-
tions was a big step in the rapprochement between people
and computers, our life as we used to know it, and the digi-
tal world. Computers were programmed to fit our lives a
little better, and we have adapted a little to accommodate
them. In time, using a computer has become a basic skill,
like driving.

The personal computer was the first step in making
computers accessible to the masses; it made digital tech-
nology a larger part of our lives and, most important for
our story in this book, allowed more of our lives to be
recorded digitally. As such, it was a significant stepping-
stone in this process of converting our lives to data, data
that we can then analyze and learn from.

Computers Exchange Data

The next major development in computing was in con-
nectivity. Though hooking up computers by data links to
exchange information had been done before, commercial
systems started to become widespread in 1990s to con-
nect personal computers to each other or to central serv-
ers over phone or dedicated lines.

The computer network implies that a computer is no
longer isolated but can exchange data with a computer far

6   chapter 1

away. A user is no longer limited to their own data on their
own computer but can access data elsewhere, and if they
want, they can make their data available to other users.

The development of computer networks very quickly
culminated in the Internet, which is the computer network
that covers the whole globe. The Internet made it possible
for anyone in the world who has access to a computer to
send information, such as an email, to anyone else. And
because all our data and devices are already digital, the
information we can share is more than just text and num-
bers; we can send images, videos, music, speech, anything.

With computer networks, digitally represented infor-
mation can be sent at the speed of light to anyone, any-
where. The computer is no longer just a machine where data
is stored and processed, but it has also become a means to
transfer and share information. Connectivity increased so
quickly and digital communication has become so cheap,
fast, and reliable that digital transfer has supplanted mail
as the main technology for information transfer.

Anyone who is “online” can make their own data on
their own computer available over the network to anyone
else, which is how the World Wide Web was born. People
can “surf” the Web and browse this shared information.
Very quickly, secure protocols have been implemented to
share confidential information, thereby permitting com-
mercial transactions over the Web, such as online shopping
or banking. Online connectivity has further increased the

	 Why We Are Interested in Machine Learning    7

infiltration of digital technology. When we get an online
service by using the “www.” portal of the service provider,
our computer turns into the digital version of the shop,
the bank, the library, or the university; this, in turn, cre-
ated more data.

Mobile Computing

Every decade we have been seeing computers getting
smaller, and with advances in battery technology,2 in the
mid-1990s, portable—laptop or notebook—computers
that can also run on batteries started to become wide-
spread; this started the new era of mobile computing. Cel-
lular phones also started to become popular around the
same time, and roughly around 2005, these two technolo-
gies merged in the smartphone.

A smartphone is a phone that is also a computer. In
time, the smartphone became smarter—more a computer
and less a phone—so much so that today, the phone is only
one of many apps on a smartphone, and a rarely used one
at that. The traditional phone was an acoustic device: you
talked into it, and you heard the person on the other end
talking. The smartphone today is more of a visual device;
it has a large screen and we spend more time looking at
this screen or tapping its touch-sensitive surface than
talking.

8   chapter 1

A smartphone is a computer that is always online3
and it allows its user to access the Internet for all types of
information while mobile. It therefore extends our con-
nectivity in that it permits us greater access—for example,
while traveling—to data on other computers, as well as
making us, and our data, accessible to others.

What makes a smartphone special is that it is also a
mobile sensing device and because it is always on our per-
son, it continuously records information about us, most
notably our position, and can make this data available. The
smartphone is a mobile sensor that makes us detectable,
traceable, recordable.

This increased mobility of the computer is new. Once
the computer was big and at a “computer center”; it stayed
fixed, and we needed to walk to it. We sat in front of a
terminal to use the computer—it was called a “terminal”
because the computer ended there. Then a smaller com-
puter came to our department, and later a smaller one sat
on our desk in our office or in our house, and then an even
smaller one was on our lap, and now the computer is in our
pocket and with us all the time.

Once there were very few computers, possibly one
computer per thousands of people—for example, one
per company or campus. This computer-per-person ratio
increased very quickly, and the personal computer aimed
to have one computer for every person. Today we have
many computers per person. Now all our devices are also

	 Why We Are Interested in Machine Learning    9

computers or have computers in them. Your phone is also
a computer, your TV is also a computer, your car has many
computers inside it for different functions, and your music
player is a specialized computer as is your camera or your
watch. The smart device is a computer that does the digital
version of whatever it did originally.

Ubiquitous computing is a term that is becoming
increasingly popular; it means using computers without
knowing that you are using one. It means using a lot of
computers for all sorts of purposes all the time without
explicitly calling them computers. The digital version has
its usual advantages, such as speed, accuracy, and easy
adaptability. But another advantage that is most relevant
to our discussion is that the digital version of the device
now has all its data digitally. And furthermore, if it is
online, it can talk to other online computers and make its
data available almost instantaneously. We call them “smart
objects” or just “things” and talk about the Internet of
Things.

Social Data

A few thousands of years ago, you needed to be a god or
goddess if you wanted to be painted, be sculpted, or have
your story remembered and told. A thousand years ago
you needed to be a king or queen, and a few centuries ago

10   chapter 1

you needed to be a rich merchant, or in the household of
one. Now anybody, even a soup can, can be painted. A simi-
lar democratization has also taken place in computing and
data. Once only large organizations and businesses had
tasks worthy of a computer and hence only they had data;
starting with the personal computer, people and even
objects became generators of data.

With most communication now being done using com-
puters (including smartphones) over the Internet, a recent
source of data is social media, where our social interactions
have become digital; these now constitute another type
of data that can be collected, stored, and analyzed. Social
media replaces discussions in the agora, piazza, market,
coffeehouse, and pub, or at the gathering by the spring,
the well, and the water cooler.

With social media, each of us is now a celebrity whose
life is worth following, and we are our own paparazzi. We
are no longer allotted only fifteen minutes of fame, but
every time we are online we are famous. The social media
allows us to write our digital autobiography as we are liv-
ing it. In the old times, books and newspapers were expen-
sive and hence scarce; we could keep track of and tell the
story of only important lives. Now data is cheap, and we
are all kings and queens of our little online fiefdoms. Digi-
tally savvy people of today who are continually posting on
the social media as they wander from place to place are
modern day versions of Odysseus, composing, and at the

	 Why We Are Interested in Machine Learning    11

same time broadcasting in real time, their own digitized
epics, with their own thrills and dangers.

All That Data: The Dataquake

The data generated by all our computerized machines
and services was once a by-product of digital technology,
and computer scientists have done significant amount
research on how to store and manipulate large amounts
of data in databases most efficiently. Then, we stored data
because we had to; more data meant costlier storage and
slower access. Sometime in the last two decades, all this
data became a resource; now, more data is a blessing.

Think, for example, of a supermarket chain that sells
thousands of goods to millions of customers every day,
either at one of the numerous brick-and-mortar stores
all over a country or through a virtual store over the Web.
The point-of-sales terminals are digital and record the
details of each transaction: data, customer id (through
some loyalty program), goods bought and at what price,
total money spent, and so forth. The stores are connected
online, and the data from all the terminals in all the stores
can be instantaneously collected in a central database. This
amounts to a lot of (and very up-to-date) data every day.

Especially in the last twenty years or so, people have
increasingly started to ask themselves what they can do

12   chapter 1

with all this data. With this question the whole direction
of computing is reversed. Before, data was what the pro-
grams processed and spit out—data was passive. With
machine learning, data starts to drive the operation; it
is not the programmers anymore but the data itself that
defines what to do next.

One thing that a supermarket chain is always eager
to know is which customer is likely to buy which product.
With this knowledge, stores can be stocked more efficiently,
which will increase sales and profit. It will also increase
customer satisfaction because customers will be able to
find the products that they need quicker and cheaper.

This task is not evident. We do not know exactly which
people are likely to buy this ice cream flavor or the next
book of this author, to see this new movie, or to visit this
city. Customer behavior changes in time and depends on
geographic location.

But there is hope, because we know that customer
behavior is not completely random. People do not go to
supermarkets and buy things at random. When they buy
beer, they buy chips; they buy ice cream in summer and
spices for Glühwein in winter. There are certain patterns
in customer behavior, and that is where data comes into
play.

Though we do not know the customer behavior pat-
terns themselves, we expect to see them occurring in the
collected data. So if we can find such patterns in past data,

With machine learning,
data starts to drive
the operation; it is not
the programmers
anymore but the data
itself that defines what
to do next.

14   chapter 1

assuming that the future, at least the near future, will not
be much different from the past when that data was col-
lected, we could expect them to continue to hold, and we
can make correct predictions based on them.

We may not be able to identify the process completely,
but we believe we can construct a good and useful approxi-
mation. That approximation may not explain everything
but may still be able to account for some part of the data.
We believe that though identifying the complete process
may not be possible, we can still detect some patterns. We
can use those patterns to predict; they may also help us
understand the process.

This is called data mining. The analogy is that a large
volume of earth and raw material is extracted from the
mine, which when processed leads to a small amount of
very precious material. Similarly, in data mining, a large
volume of data is processed to construct a simple model
with valuable use, for example, one with high predictive
accuracy.

Data mining is one type of machine learning. We do
not know the rules (of customer behavior), so we can-
not write the program, but the machine—that is, the
computer—“learns” by extracting such rules from (cus-
tomer transaction) data.

Many applications exist where we do not know the
rules but have a lot of data. As we discussed before, the fact
that computers and digital technology have penetrated so

	 Why We Are Interested in Machine Learning    15

deep into our everyday lives implies that now there are
large amounts of data in all sorts of domains ready for
mining.

Learning models are also used in pattern recognition,
for example, in recognizing images captured by a camera
or recognizing speech captured by a microphone. These
days, we have different types of sensors used for differ-
ent type of applications, from human activity recognition
using a smartphone to driving assistance systems in cars.

Another data source is science. As we build better
sensors, we detect more—that is, we get more data—in
astronomy, biology, physics, and so on, and we use learn-
ing algorithms to make sense of the bigger and bigger data.
The Internet itself is one huge data repository, and we need
smart algorithms to help us find what we are looking for.
One important characteristic of data we have today is that
it comes from different modalities—it is multimedia. We
have text, we have images or video, we have sound clips,
and so on, all somehow related to the same object or event
we are interested in, and a major challenge in machine
learning today is to combine information coming from
these different sources. For example, in consumer data
analysis, in addition to past transactions, we also have
Web logs—namely, the Web pages that a user has visited
recently—and these logs may be quite informative.

With all types of smart machines continuously help-
ing us in our daily lives, we have all become producers of

16   chapter 1

data. Every time we buy a product, every time we rent a
movie, visit a Web page, or post on the social media, even
when we just walk or drive around, we are generating data.
And that data is valuable for someone who is interested in
collecting and analyzing it, because we are also consumers
of data. We want to have products and services specialized
for us. We want our needs to be understood and our inter-
ests to be predicted. The customer is not only always right,
but also interesting and worth tracking.

Learning versus Programming

To solve a problem on a computer, we need an algorithm.
An algorithm is a sequence of instructions that are car-
ried out to transform the input to the output. For example,
we have an algorithm for calculating payroll: The input is
the work-related information of an employee, such as a
timesheet, and personal information such as marital sta-
tus, and the output is their salary.

An algorithm is similar to a recipe for a dish. Preparing
any dish requires basic actions such as peeling, slicing, fry-
ing, and so on. The recipe for a dish defines which of these
actions should be carried out on which ingredient and in
which order. Any person who can do these basic actions
can prepare a dish just by following the recipe. This is what
we have in computer programming, where the central

	 Why We Are Interested in Machine Learning    17

processing unit (CPU) of the computer has a set of basic
instructions and the algorithm defines which instructions
should be carried out on which input and in which order.
A software library is just like a cookbook.

In the past decades we have devised algorithms for
many tasks, and that is why computers and digital technol-
ogy are so widely used now. But for some problems, we do
not yet have an algorithm. Predicting customer behavior
is one; another is differentiating spam emails from legiti-
mate ones. We know what the input is: an email document
that in the simplest case is a text message. We know what
the output should be: a yes/no output indicating whether
the message is spam or not. But we do not know how to
transform the input to the output. What is considered
spam changes over time and from individual to individual.

What we lack in knowledge, we make up for in data.
We can easily compile thousands of messages, some of
which we know to be spam and some of which are not, and
what we want is to “learn” what constitutes spam from
this sample. For example, after analyzing example data,
we may notice that words like “offer” and “opportunity”
or symbols like “$” or “!” appear much more frequently in
spam e-mails than they appear in ordinary e-mails, so our
spam filter increases the probability that a given e-mail is
spam if it sees any one of these in a new email.

In learning, we would like the computer (the machine)
to extract automatically the algorithm for the task that

18   chapter 1

underlies the data. There is no need to learn to calculate
payroll, we already know how to do it, but there are many
applications for which we do not have an algorithm but
can collect lots of data.

Artificial Intelligence

Machine learning is not just a database or programming
problem; it is also a requirement for artificial intelligence.
A system that is in a changing environment should have
the ability to learn; if it keeps on making the same mistakes
over and over, we will hardly call it intelligent. Learning is
smart from an engineering point of view as well because
if the system can detect and adapt to changes, the system
designer need not foresee and provide solutions for all
possible situations.

For us, the system designer was evolution, and our
body shape as well as our built-in instincts and reflexes
have evolved over millions of years. We also learn to
change our behavior during our lifetime. This helps us cope
with changes in the environment that cannot be predicted
by evolution. Organisms that have a short life in a well-
defined environment may have all their behavior built-in,
but instead of hardwiring into us all sorts of behavior for
any circumstance that we might encounter in our life, evo-
lution gave us a large brain and a mechanism to learn such

Machine learning is
not just a database or
programming problem;
it is also a requirement
for artificial intelligence.
A system that is in a
changing environment
should have the ability
to learn.

20   chapter 1

that we could update ourselves with experience and adapt
to different environments. That is why human beings have
survived and prospered in different parts of the globe in
very different climates and conditions. When we learn
the best strategy in a certain situation that knowledge is
stored in our brain, and when the situation arises again—
when we recognize (“cognize” means to know) the situa-
tion—we recall the suitable strategy and act accordingly.

Each of us, actually every animal, is a data scientist.
We collect information about our environment using our
sensors, and then we process the data to devise rules of
behavior to control our actions in different circumstances
to minimize pain and/or maximize pleasure. We have
memory to store those rules in our brains, and then we
recall and use them when needed. Learning is lifelong;
we forget rules when they no longer apply or revise them
when the environment changes.

Learning has its limits though; there may be things
that we can never learn with the limited capacity of our
brains, just like we can never “learn” to grow a third arm,
or an eye in the back of our head—something that would
require a change in our genetic makeup. Roughly speak-
ing, genetics defines the hardware that slowly adapts over
thousands of generations through mutation, whereas
learning defines the adaptation of the software running
on (and being constrained by) that hardware during an
individual’s lifetime.

	 Why We Are Interested in Machine Learning    21

Artificial intelligence takes inspiration from the brain.
There are cognitive scientists and neuroscientists whose
aim is to understand the functioning of the brain, and
toward this aim, they build models of neural networks
and make simulation studies. But artificial intelligence is
a part of computer science and our aim is to build use-
ful systems, as in any domain of engineering. So, though
the brain inspires us, ultimately, we do not care much
about the biological plausibility of the algorithms we
develop.

We are interested in the brain because we believe that
it may help us build better computer systems. The brain
is an information-processing device that has some incred-
ible abilities and surpasses current engineering products
in many domains—for example, vision, speech recogni-
tion, and learning, to name three. These applications have
evident economic utility if implemented on machines. If
we can understand how the brain performs these func-
tions, we can define solutions to these tasks as formal
algorithms and implement them on computers.

Computers were once called “electronic brains,” but
computers and brains are different. Whereas a computer
generally has one or few processors, the brain is com-
posed of a very large number of processing units, namely,
neurons, operating in parallel. Though the details are not
completely known, the processing units are believed to
be much simpler and slower than a typical processor in

22   chapter 1

a computer. What also makes the brain different, and is
believed to provide its computational power, is its large
connectivity. Neurons in the brain have connections,
called synapses, to tens of thousands of other neurons,
and they all operate in parallel. In a computer, the proces-
sor is active, and the memory is separate and passive, but
it is believed that in the brain both processing and mem-
ory are distributed together over the network; processing
is done by the neurons and memory occurs in the synapses
between the neurons.

Understanding the Brain

According to Marr (1982), understanding an information
processing system works at three levels of analysis:

1.	 Computational theory corresponds to the goal of
computation and an abstract definition of the task.

2.	 Representation and algorithm define how the input and
the output are represented, and about the specification
of the algorithm for the transformation from the input
to the output.

3.	 Hardware implementation is the actual physical
realization of the system.

	 Why We Are Interested in Machine Learning    23

The basic idea in these levels of analysis is that for the
same computational theory, there may be multiple repre-
sentations and algorithms manipulating symbols in that
representation. Similarly, for any given representation
and algorithm, there may be multiple hardware imple-
mentations. For any theory, we can use one of various
algorithms, and the same algorithm can have different
hardware implementations.

Let us take an example: ‘6’, ‘VI’, and ‘110’ are three
different representations of the number six; respectively,
they are the Arabic, Roman, and binary representations.
There is a different algorithm for addition depending on
the representation used. Digital computers use the binary
representation and have circuitry to add in this represen-
tation, which is one particular hardware implementation.
Numbers are represented differently, and addition cor-
responds to a different set of instructions on an abacus,
which is another physical implementation. When we add
two numbers “in our head,” we use another representation
and an algorithm suitable to that representation, which is
implemented by the neurons. But all these different physi-
cal realizations—namely, us, abacus, digital computer—
implement the same computational theory: addition.

In engineering we go from top to bottom. For example,
in software engineering, first we decide on the require-
ments, then we go down one step and devise an algorithm
suitable for the task and the suitable data structures to

24   chapter 1

store the necessary information in computer memory,4
and finally we go down another step and write the algo-
rithm in a programming language to be executed on a par-
ticular computer.

Sometimes it is necessary to go in the opposite direc-
tion from bottom to top; this is called reverse engineering.
For example, in World War II, the German military used
a machine called the Enigma to encrypt communications.
Intensive work by the Allies resulted in the discovery of its
internal mechanisms, and this allowed decryption.

Another example, though this is not information
processing, is the difference between natural and artificial
flying machines. Humanity had always dreamed of flying,
and our early attempts to copy birds by putting on big
wings did not work; our arms and shoulders are not strong
enough to flap wings big enough to carry our weight—that
was an attempt to copy at too low a level. But once science
advanced and we discovered the rules of aerodynamics,
that is, once we were able to go up to the level of theory, we
were able to devise another implementation for the same
theory, and with the means we had, we invented propel-
lers, and later on, jet engines. A sparrow flaps its wings;
an airplane does not flap its wings but uses jet engines.
The sparrow and the airplane are two hardware implemen-
tations built for different purposes, satisfying different
constraints. But they both obey the same theory, which
is aerodynamics.

	 Why We Are Interested in Machine Learning    25

In artificial intelligence, we want to do the same for
intelligence. We can say that the brain is one hardware
implementation for intelligence. If from this particu-
lar implementation we can do reverse engineering and
extract the representation and the algorithm used, and if
from that in turn we can get the computational theory, we
can then use another representation and algorithm, and
in turn a hardware implementation more suited to the
means and constraints we have.

In chapter 4 we will discuss artificial neural networks
that are composed of interconnected processing units and
how such networks can learn—this is the representation
and algorithm level. In time, when we discover the compu-
tational theory of intelligence, we may discover that neu-
rons and synapses are implementation details, just as we
have realized that feathers are for flying.

Pattern Recognition

In computer science, we have tried to solve many tasks
using manually specified rules and algorithms. Decades of
work have led to very limited success. Some of these tasks
relate to artificial intelligence in that they are believed to
require intelligence. The current approach, in which we
have seen tremendous progress recently, is to use machine
learning from data.

26   chapter 1

Let us take the example of recognizing faces: this is a
task that we do effortlessly; every day we recognize fam-
ily members and friends by looking at their faces or from
their photographs, despite differences in pose, lighting,
hairstyle, and so forth. Face perception is important for
us because we want to tell friend from foe. It was impor-
tant for our survival not only for identification, but also
because the face is the dashboard of our internal state.
Feelings such as happiness, anger, surprise, and shame
can be read from our face, and we have evolved both to
display such states as well as to detect it in others.

Though we do such recognition easily, we do it uncon-
sciously and are unable to explain how we do it. Because
we are not able to explain our expertise, we cannot write
the corresponding computer program.

By analyzing different face images of a person, a learn-
ing program captures the pattern specific to that person
and then checks for that pattern in a given image. This is
one example of pattern recognition.

The reason we can do this is because we know that a
face image, just like any natural image, is not just a ran-
dom collection of pixels (a random image would be like
a snowy TV). A face has structure. It is symmetric. The
eyes, the nose, and the mouth are located in certain places
on the face. Each person’s face is a pattern composed of a
particular combination of these. When the illumination
or pose changes, when we grow our hair or put on glasses,

	 Why We Are Interested in Machine Learning    27

or when we age, certain parts of the face image change
but some parts do not. The learning algorithm finds those
unchanging discriminatory features and the way they are
combined to define a particular person’s face by going over
a number of images of that person.

What We Talk about When We Talk about Learning

In machine learning, the aim is to have a computer pro-
gram that learns. Learning means getting better through
experience. “Better” implies a performance criterion that
is optimized. “Experience” implies data collected in the
past—for example, in past trials. From a programming
point of view, “getting better” is implemented as the modi-
fication of the decision-making program so that in time, as
it sees more data, its output leads to higher performance
according to the criterion that is to be optimized.

A learning program is different from an ordinary
computer program in that it is a general template with
modifiable parameters, and by assigning different values to
these parameters the program can do all sorts of differ-
ent things. The learning algorithm adjusts the parameters
of the template—which we call a model—by optimizing a
performance criterion defined on the data.

For example, for a game-playing program, the param-
eters are adjusted as we play against an opponent so that

28   chapter 1

the ratio of our wins to losses increase. For a face rec-
ognizer, the parameters are adjusted so that we get the
highest prediction accuracy on a set of training images of
a person. The learning process is generally repetitive and
incremental. The learning program sees examples (games
or faces) one after the other, and the parameters are
updated slightly at each example, so that the performance
improves gradually in time. After all, this is what learning
is: as we learn a task, we get better at it, be it tennis, geom-
etry, or a foreign language.

In chapter 2, we will cover in more detail what the
template is (actually as we will see, we have different tem-
plates depending on the type of the task) and the different
learning algorithms that adjust the parameters so as to get
the best performance.

In building a learner, there are a number of important
considerations:

First, we should keep in mind that just because we
have a lot of data, it does not mean that there are underly-
ing rules that can be learned. We should make sure that
there are dependencies in the underlying process and that
the collected data provides enough information for them
to be learned with acceptable accuracy.

Let’s say we have a phone book containing people’s
names and their phone numbers. It does not make sense
to believe that there is an overall relationship between
names and phone numbers; in such a case, we can do no

The learning program
sees examples one
after the other, and the
parameters are updated
slightly at each example,
so that the performance
improves gradually. This
is what learning is: as
we learn a task, we get
better at it.

30   chapter 1

better than just storing the known name–phone number
pairs in a database. And furthermore, there can be no gen-
eralization to new instances; because we cannot infer a
general rule, we cannot make a prediction for the phone
number of a new name.

Second, the learning algorithm itself should be effi-
cient, because generally we have a lot of data and we want
learning to be as fast as possible, using computation and
memory effectively. In many applications, the underlying
characteristics of the problem may change in time; in such
a case, previously collected data becomes obsolete and
the need arises to continuously and efficiently update the
trained model with new data.

Third, once a learner has been built and we start using
it for prediction, it should be efficient in terms of memory
and computation as well. In certain applications, the effi-
ciency of the final model may be as important as its predic-
tive accuracy. For the case of a self-driving car for example,
all the necessary computation for recognition, decision
making, and action should be done fast enough so that
the car can go at a reasonable speed.

History

Going from particular examples to general concepts is
called induction. Over the course of our lives, we see many

	 Why We Are Interested in Machine Learning    31

trees at different times in different places, all slightly
different from the other trees in some respects; yet, at the
same time, they also all have something in common, and
it is this set of common properties that defines our general
definition of “treeness.” That general concept is stored in
our mind so that when we see a new object, we can say
whether it is a tree or not depending on how well that
object matches our learned definition of “treeness.”

Almost all of science is fitting general models to
data. Scientists—such as Galileo, Newton, and Mendel—
designed experiments, made observations, and collected
data. They then tried to extract knowledge by devising
theories, that is, by building models to explain the
data they observed.5 They then used these theories to
make predictions and if they didn’t work, they collected
more data and revised the theories. This process of data
collection and theory/model building continued until they
got models that had enough explanation power.

We are now at a point where this type of data analy-
sis can no longer be done manually, because people who
can do such analysis are rare; furthermore, the amount
of data is huge and manual analysis is not possible. There
is thus a growing interest in computer programs that can
analyze data and extract information automatically from
them—in other words, learn.

The methods that we discuss have their origins in
different scientific domains. It was not uncommon that

32   chapter 1

sometimes the same or very similar algorithms were inde-
pendently invented in different fields following different
historical paths.

The main theory underlying machine learning comes
from statistics, where going from particular observations,
called the sample, to general descriptions of the popula-
tion, is called inference and learning is called estimation.
Classification is called discriminant analysis in statistics.
Statisticians used to work on small samples and, being
mathematicians, mostly worked on simple models that
could be analyzed mathematically. In engineering, classi-
fication is called pattern recognition and the approach is
more empirical.

In computer science, as part of work on artificial
intelligence, research was done on learning algorithms; a
parallel but almost independent line of study was called
knowledge discovery in databases. In electrical engineering,
research in signal processing resulted in adaptive image
processing and speech recognition programs.

In the mid-1980s, a huge explosion of interest in arti-
ficial neural network models from various disciplines took
place. These disciplines included physics, statistics, psy-
chology, cognitive science, neuroscience, and linguistics,
not to mention computer science, electrical engineering,
and adaptive control. Perhaps the most important con-
tribution of research on artificial neural networks is this

	 Why We Are Interested in Machine Learning    33

synergy that bridged various disciplines, especially statis-
tics and computer science. The fact that neural network
research, which later led to the field of machine learning,
started in the 1980s is not accidental. At that time, with
advances in VLSI (very large-scale integration) technol-
ogy, we gained the capacity to build parallel hardware
containing thousands of processors, and artificial neural
networks was of interest as a possible theory to distribute
computation over a large number of processing units, all
running in parallel. Furthermore, because they could learn
from data, they would not need programming.

As we will discuss in chapter 4, a neural network is
composed of layers of processing units, each checking for
a particular condition in the input and with successive lay-
ers checking for more abstract conditions. Already in early
1990s, we witnessed successful neural network applica-
tions; two that stand out were LeCun’s LeNet network for
recognizing handwritten digits and Tesauro’s TD-Gammon
network that played backgammon. In this last decade with
more data and computing power available, we have been
seeing many impressive applications of “deep” neural
networks composed of sometimes hundreds of such lay-
ers. So, for example, networks deeper than LeNet are now
being used in face recognition, and a network deeper than
TD-Gammon has learned to play Go. The recent tectonic
interest in machine learning and artificial intelligence is

34   chapter 1

largely due to such successes with deep neural networks.
Such successes unfortunately have also led to unrealistic
claims and far-fetched extrapolations.

Machine learning is at the intersection of statistics
and computer science, occasionally also taking inspira-
tion from cognitive science and neuroscience. Research in
these different communities followed different paths in
the past with different emphases. Our aim in this book
is to bring them together to give a unified introductory
treatment of the field, together with some interesting
applications, devoid, as much as possible, of hype.

Now, let us start discussing the basic concepts and
applications of machine learning.

2

MACHINE LEARNING, STATISTICS,
AND DATA ANALYTICS

Learning to Estimate the Price of a Used Car

We saw in the previous chapter that we use machine learn-
ing when we believe there is a relationship between the
observations of interest but do not know how. Because we
do not know its exact form, we cannot just go ahead and
write down the computer program. So our approach is to
collect data of example observations and to analyze it to
discover the relationship. Now, let us discuss further what
we mean by a relationship and how we extract it from data;
as always, it is a good idea to use an example to make the
discussion concrete.

Consider the problem of estimating the price of a used
car. This is a good example of a machine learning applica-
tion because we do not know the exact formula for this; at
the same time, we know that there should be some rules:

36   chapter 2

the price depends on the properties of the car, such as its
brand; it depends on usage, such as mileage; and it even
depends on things that are not directly related to the car,
such as the current state of the economy.

Though we can identify these as the factors, we do not
know exactly how they affect the price. For example, we
know that, on average, as mileage increases price decreases,
but we do not know how quickly this occurs. How these
factors are combined to determine the price is what we do
not know; luckily, we have data to help us. We can look at a
number of cars currently in the market, record their attri-
butes and how much they go for, and then we can try to
learn the specifics of the relationship between such attri-
butes and the price.

In doing that, the first question is to decide what to
use as the input representation, that is, the attributes that
we believe have an effect on the price of a used car. Those
that immediately come to mind are the make and model
of the car, its year of production, and its mileage. You can
think of others too, but such attributes should be easy to
record.

One important fact is that there can be two different
cars having exactly the same values for these attributes, yet
they can still go for different prices. This is because there
are other factors that have an effect, such as accessories.
There may also be factors that we cannot directly observe
and hence cannot include in the input—for example, all

	 Machine Learning, Statistics, and Data Analytics    37

the conditions under which the car has been driven in the
past and how well the car has been maintained.

The crucial point is that no matter how many proper-
ties we list as input, there are always other factors that
affect the output; we cannot possibly record and take all of
them as input, and all these other factors that we neglect
introduce uncertainty.

The effect of this uncertainty is that we can no longer
estimate an exact price, but we can estimate an interval in
which the unknown price is likely to lie, and the length of
this interval depends on the amount of uncertainty—it
defines how much the price can vary due to those factors
that we do not, or cannot, take as input.

Randomness and Probability

In mathematics and engineering, we model uncertainty
using probability theory. In a deterministic system, given
the inputs, the output is always the same; in a random
process, the output depends also on uncontrollable fac-
tors that introduce randomness.

Consider the case of tossing a coin. It can be claimed
that if we have access to knowledge such as the exact
composition of the coin, its initial position, the amount,
position, and the direction of the force applied to the
coin when tossing it, where and how it is caught, and so

38   chapter 2

forth, the outcome of the toss can be predicted exactly; but
because all this information is hidden from us, we can only
talk about the probability of the outcomes of the toss. We
do not know if the outcome is heads or tails, but we can say
something about the probability of each outcome, which
is a measure of our belief in how likely that outcome is. For
example, if a coin is fair, the probability of heads and the
probability of tails are equal—if we toss it many times, we
expect to see roughly as many heads as tails.

If we do not know those probabilities and want to esti-
mate them, then we are in the realm of statistics. We follow
the common terminology and call each data instance an

“example” and reserve the word “sample” for the collection
of such examples. The aim is to build a model to explain the
process that generates the sample. In the coin tossing case,
we collect a sample by tossing the coin a number of times
and record the outcomes—heads or tails—as our observa-
tions. Then, our estimator for the probability of heads can
simply be the proportion of heads in the sample—if we
toss the coin six times and see four heads and two tails in
our sample, we estimate the probability of heads as ⅔ (and
hence the probability of tails as ⅓). Then if we are asked to
guess the outcome of the next toss, our estimate will be
heads because it is the more probable outcome.

This type of uncertainty underlies games of chance,
which makes gambling a thrill for some people. But most
of us do not like uncertainty, and we try to avoid it in our

	 Machine Learning, Statistics, and Data Analytics    39

lives, at some cost if necessary. For example, if the stakes
are high, we buy insurance—we prefer the certainty of
never losing a large amount of money (due to accidental
loss of something of high worth) to the cost of paying a
small premium, even if the event is very unlikely.

The price of a used car is similar in that there are
uncontrollable factors that make the depreciation of a
car a random process. Two cars following one another on
the production line are exactly the same at that point and
hence are worth exactly the same. Once they are sold and
start being used, all sorts of factors start affecting them:
one of the owners may be more meticulous, one of the cars
may be driven in better weather conditions, one car may
have been in an accident, and so on. Each of these factors
is like a random coin toss that varies the price.

A similar argument can also be made for customer
behavior in retail. We expect customers in general to
follow certain patterns in their purchases depending on
factors such as the composition of their household, their
tastes, their income, and so on. Still, there are always addi-
tional random factors that introduce variance: vacation,
change in weather, some catchy advertisement, and so on.
As a result of this randomness, we cannot estimate exactly
which items will be purchased next, but we can calculate
the probability that an item will be purchased. Then if we
want to make predictions, we can just choose the items
whose probabilities are the highest.

40   chapter 2

Learning a General Model

Whenever we collect data, we need to collect it in such a way
as to learn general trends. For example, in representing a
car, if we use the brand as an input attribute, we define a
very specific car. But if we instead use general attributes
such as the number of seats, engine power, trunk volume,
and so forth, we can learn a more general estimator. This
is because different models and makes of cars all appeal
to the same type of customer, called a customer segment,
and we would expect cars in the same segment to depre-
ciate similarly. Ignoring the brand and concentrating on
the basic attributes that define the segment is equivalent
to using the same, albeit noisy, data instance for all such
cars of the same type; it effectively increases the size of
our data.

A similar argument can also be made for the output.
Instead of estimating the price as is, it makes more sense
to estimate the percentage of its original price, that is, the
effect of depreciation. This again allows us to learn a more
general model.

Though of course it is good to learn models that are
general, we should not try to learn models that are too
general. For example, cars and trucks have very different
characteristics, and it is better to collect data separately
and learn different models for the two than to collect data
and try to learn a single model covering both.

	 Machine Learning, Statistics, and Data Analytics    41

Another important fact is that the underlying task may
change in time. For example, the price of a car depends
not only on the attributes of the car, the attributes rep-
resenting its past usage, or the attributes of the owner,
but also on the state of the economy, that is, the price of
other things. If the economy, which is the environment
in which we do all our buying and selling, undergoes sig-
nificant changes, previous trends no longer apply. Statisti-
cally speaking, the properties of the random process that
underlie the data have changed—we are given a new set
of coins to toss. In this case, the previously learned model
does not hold anymore, and we need to collect new data
and learn again; or, if we have a mechanism for getting
feedback about our performance, we can fine-tune the
model as we continue to use it.

Model Selection

One of the most critical points in learning is the model
that defines the template of the relationship between the
inputs and the output. For example, if we believe that we
can write the output as a weighted sum of the attributes,
we can use a linear model where attributes have an additive
effect.

Let us see an example. Assume we only take mileage
as our input attribute and that we collect the data given in

42   chapter 2

table 1. We have seven cars whose mileage and price values
are recorded. We can fit a linear model to that data; that is,
we draw the line that passes as close as possible to those
data points. Figure 1 shows the data points and the fitted
line. That linear model is written as

y = 39258 – 0.3427x

where x denotes the mileage and y denotes the estimated
price. The line starts at 39,258 US dollars—that is the
estimate for a car with 0 miles—and every additional mile
decreases the price by 34.27 cents, or equivalently, every

Table 1  The example data set is composed of seven cars,
each with its mileage (in miles) and price (US dollars).
The index is just to name them; the order of the cars is
not important.

Index Mileage Price

1 9,000 38,500

2 95,000 6,000

3 20,000 32,000

4 60,000 15,000

5 15,000 35,000

6 30,000 27,000

7 90,000 12,000

	 Machine Learning, Statistics, and Data Analytics    43

additional 10,000 miles driven pulls the price down by
3,427 US dollars.

That value, –0.3427, is the weight of mileage on
price. Not only the value but the sign of a weight is also
informative. Here, analysis of the data indicated that
the relationship is negative—as mileage increases price
decreases—but in another example the weight can be

40,000

60,000

x : mileage

y
: p

ri
ce

80,000 100,000

35,000

30,000

25,000

20,000

20,000 40,000

15,000

10,000

5,000

0
0

Figure 1  Estimating the price of a used car as a regression task. Each cross
represents one car from table 1 where the horizontal x-axis is its mileage and
the vertical y-axis is its price. Together they constitute the training set. In
estimating the price of a used car, we want to learn a model that fits (passes
as close as possible to) these data points; an example linear fit is shown. Once
such a model is fit, it can be used to predict the price of any car given
its mileage.

44   chapter 2

positive; for example, if we have an additional attribute for
engine power, we will find that price increases with larger
engines. It may also be the case that the weight estimated
from the data turn out to be very close to zero; in such a
case, we can conclude that the corresponding attribute is
not important and eliminate it from the model.

These weights are the parameters of the model and are
calculated from the data. The model is always fixed; it is
the parameters that are adjustable, and it is this process of
adjustment to better match the data that we call learning.

The linear model is very popular because it is simple;
it has few parameters and it is easy to calculate a weighted
sum. It is easy to understand and interpret. Furthermore,
it works surprisingly well for a lot of different tasks.

No matter how we vary its parameters, each model
can only be used to learn a set of problems and model selec-
tion refers to the task of choosing between models. Select-
ing the right model is a more difficult task than optimizing
the parameters of a given model, and information about
the application is helpful.

For instance, here, in estimating car prices, the linear
model may not be applicable if the range is long. It has been
seen empirically that the effect of the age is not arithmetic
but geometric: each additional year does not decrease the
price by the same amount, but a typical vehicle loses 15
percent of its value each year.1 In later sections, we dis-
cuss some machine learning algorithms that use nonlinear

	 Machine Learning, Statistics, and Data Analytics    45

models that are more powerful, in the sense that they can
be used in a larger variety of applications.

Here, it may be a good idea to point out the differ-
ence between machine learning and the usual treatment
of data in databases. Table 1 may have been drawn from
a database, containing probably not only the mileage and
the price, but all sorts of other information about the cars
and maybe also their owners. Given such a database, one
can make a query such as, “What is the price of the car
with 20,000 miles?” and find that it is 32,000 US dollars.
With a database, we only have information and care about
those particular cars; a query such as “What is the price
of the car with 25,000 miles?” is not meaningful because
there is no such car in the database.

In the case of machine learning, or statistics in general,
we consider the data in table 1 as a sample, drawn from
the population of all used cars. We assume that there is
an underlying process whereby cars lose value as they are
driven, but we do not know how this process works, and
we want to extract it from examples. We cannot possibly
access all possible cars in the population and record the
mileage and price of all of them; the ones we have access
to make up a small subset which is our sample. From a sta-
tistical point of view, we do not particularly care about this
particular sample, there can be mistakes in it, or it could
just have been a different sample; what we care about is
the population from which any sample is drawn. And the

46   chapter 2

advantage of learning, namely, going from the particu-
lar sample to the general population, is that now we can
query it with 25,000 miles, which is equivalent to ask-
ing, “What would be the price of a typical car with 25,000
miles?” where “typical” means averaged over all used cars
with 25,000 miles.

Supervised Learning

This task of estimating a numeric output value from a
set of input values is called regression in statistics; for
the linear model, we have linear regression. In machine
learning, regression is one type of supervised learning. In
this type of learning, for each example we have the input
and the desired output. The name comes from the sup-
position that there is a supervisor who can provide us with
the desired output for any input. When we collect data by
looking at the cars currently sold in the market, we are
able to observe both the attributes of the cars and also
their prices.

Earlier, we used the linear model with its weight
parameters. Each model corresponds to a certain type of
dependency assumption between the inputs and the out-
put. Learning corresponds to adjusting the parameters
so that the model makes the most accurate predictions
on the data. In the general case, learning implies getting

	 Machine Learning, Statistics, and Data Analytics    47

better according to a performance criterion, and in regres-
sion, performance depends on how close the model pre-
dictions are to the observed output values in the training
data. The assumption here is that the training data is large
and diverse enough to cover sufficiently well the charac-
teristics of the underlying task, so a model that works
accurately on the training data can be said to have learned
the task.

The different machine learning algorithms we have in
the literature either differ in the models they use, or in
the performance criteria they optimize, or in the way the
parameters are adjusted during this optimization.

At this point, we should remember that the aim of
machine learning is rarely to replicate the training data
but the correct prediction of new cases. If there were only
a certain number of possible cars in the market and if
we knew the price for all of them, then we could simply
store all those values and do a table lookup; this would
be memorization. But frequently (and this is what makes
learning interesting), we see only a small subset of all pos-
sible instances and from that data, we want to generalize—
that is, we want to learn a general model that goes beyond
the training examples to also make good predictions for
inputs not seen during training.

Having seen only a small subset of all possible cars, we
would like to be able to predict the right price for a car
outside the training set, one for which the correct output

48   chapter 2

was not given in the training set. How well a model trained
on the training set predicts the right output for such new
instances is called the generalization ability of the model
and the learning algorithm.

The basic assumption we make here (and it is this
assumption that makes learning possible) is that similar
cars have similar prices, where similarity is measured in
terms of the input attributes we choose to use. As the
values of these attributes change slowly—for example, as
mileage changes—price is also expected to change slowly.
There is smoothness in the output in terms of the input,
and that is what makes generalization possible. Without
such regularity, we cannot go from particular cases to a
general model, as then there would be no basis in the belief
that there can be a general model that is applicable to all
cases, both inside and outside the training set.

Not only for the task of estimating the price of a used
car, but for many tasks where data is collected from the
real world, be they for business applications, pattern rec-
ognition, or science, we see this smoothness. Machine
learning, and prediction, is possible because the world has
regularities. Things in the world change smoothly. This is
Leibniz’s dictum that “Nature does not make jumps.” We
are not “beamed” from point A to point B, but we need
to pass through a sequence of intermediate locations.
Objects occupy a continuous block of space in the world.
Nearby points in our visual field belong to the same object

Machine learning, and
prediction, is possible
because the world
has regularities.
Things in the world
change smoothly. This
is Leibniz’s dictum
that “Nature does not
make jumps.

50   chapter 2

and hence mostly have shades of the same color. Sound
too, whether in song or speech, changes smoothly. Dis-
continuities correspond to boundaries, and they are rare.
Most of our sensory systems make use of this smoothness;
what we call visual illusions, such as the Kanizsa triangle
(see figure 2), are due to the smoothness assumptions of
our sensory organs and brain.2

Such an assumption is necessary because collected
data is not enough to find a unique model—learning, or
fitting a model to data, is an ill-posed problem. Every learn-
ing algorithm makes a set of assumptions about the data
to find a unique model, and this set of assumptions is

Figure 2  The Kanizsa triangle, originally created by the Italian psychologist
Gaetano Kanizsa in 1955. Although we do not see its whole contour but just
its tips, we imagine a white triangle in the foreground partially occluding the
three black circles, because such a triangle is the simplest explanation for
what we see.

	 Machine Learning, Statistics, and Data Analytics    51

called the inductive bias of the learning algorithm (Mitch-
ell 1997).

This ability of generalization is the basic power of
machine learning; it allows going beyond the training
instances. Of course, there is no guarantee that a machine
learning model generalizes correctly—it depends on
how suitable the model is for the task, how much train-
ing data there is, and how well the model parameters are
optimized—but if it does generalize well, we have a model
that is much more than the data. This is how we assess
learning: a student who can solve only the exercises that
the teacher previously solved in class has not fully mas-
tered the subject; we want them to acquire a sufficiently
general understanding from those examples so that they
can also solve new questions about the same topic.

Learning a Sequence

Let us see a very simple example. You are given a sequence
of numbers and asked to find the next number in the
sequence. Let us say the sequence is

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

You probably noticed that this is the Fibonacci sequence.
The first two terms are 0 and 1, and every term that follows

52   chapter 2

is the sum of its two preceding terms, for example, 8 + 13 =
21. Once you identify the model, you can use it to make a
prediction and guess that the next number will be 34 + 55
= 89, and then 55 + 89 = 144, and so on. You can then keep
predicting using the same model and generate a sequence
as long as you like.

The reason we come up with this answer is that we are
unconsciously trying to find a simple explanation for this
data. This is what we always do. In philosophy, Occam’s
razor tells us to prefer simpler explanations, eliminating
unnecessary complexity. For this sequence, a linear rule
where two preceding terms are added is simple enough.

If the sequence were shorter,

0, 1, 1, 2

you would not immediately go for the Fibonacci sequence—
my prediction would be 2. With short sequences, there
are many possible, and simpler, rules. As we see one more
piece of data, those rules whose next value does not match
are eliminated. Model fitting is basically a process of elimi-
nation: each extra observation (training example) is a con-
straint that eliminates all those candidates that do not
obey it. And once we run out of the simple ones, we need
to move on to complicated explanations incrementally to
cover all the terms.

	 Machine Learning, Statistics, and Data Analytics    53

The complexity of the model is defined using hyperpa-
rameters. Here the fact that the model is linear and that
only the previous two terms are used are hyperparameters.

Let us say the sequence is

0, 1, 1, 2, 3, 7, 16, 65, 321

the rule is to sum the square of the first and the second; for
example, 7 × 7 + 16 = 65. This is not linear but quadratic,
which is a more complex rule—there is an additional
multiplication.

If the sequence is

0, 1, 1, 2, 4, 7, 13, 24, 44

the rule is to sum the three preceding values, given the ini-
tial three values 0, 1, 1; for example, 4 + 7 + 13 = 24. This
is also more complex than the Fibonacci proper because it
uses three values (inputs) as opposed to two. As you see,
one needs to adjust the complexity of the model to that
of the task underlying the data; we can do this either by
changing the complexity of the calculation or by taking
more inputs into account.

Now let us say that the sequence is

0, 1, 1, 2, 3, 6, 8, 13, 20, 34, 55

54   chapter 2

Maybe you can also find a rule that explains this
sequence, but I imagine it will be a complicated one. The
alternative is to say that this is the Fibonacci sequence
with two errors (6 instead of 5 and 20 instead of 21) and
still predict 89 as the next number—or we can predict that
the next number will lie in the interval [88,90].

Instead of a complex model that explains this sequence
exactly, a noisy Fibonacci may be a more likely explanation
if we believe that there may be errors (remember our earlier
discussion on random effects due to unknown factors). And
indeed, errors are likely. Most of our sensors are far from
perfect, typists make typos all the time, and though we like
to believe that we act reasonably and rationally, we also act
on a whim and buy/read/listen/click/travel on impulse.

Learning also performs compression. Once you learn
the rule underlying the sequence, you do not need the data
anymore. By fitting a rule to the data, we get an explana-
tion that is simpler than the data, requiring less memory
to store and less computation to process. Once we learn
the rules of multiplication, we do not need to remember
the product of every possible pair of numbers.

Credit Scoring

Let us now see another application to help us discuss
another type of machine learning algorithm. A credit is an

By fitting a rule to the
data, we get an explana-
tion that is simpler.
Once we learn the rules
of multiplication, we do
not need to remember
the product of every
possible pair of numbers.

56   chapter 2

amount of money loaned by a financial institution such as
a bank, to be paid back with interest, generally in install-
ments. It is important for the bank to be able to predict in
advance the risk associated with a loan, which is a measure
of how likely it is that the customer will default and not
pay the whole amount back. This is both to make sure that
the bank will make a profit and also to not inconvenience a
customer with a loan over their financial capacity.

In credit scoring, the bank calculates a risk given the
amount of credit and the information about the customer.
This information includes data we have access to and is
relevant in calculating the customer’s financial capacity—
namely, income, savings, collateral, profession, age, past
financial history, and so forth. Again, there is no known
rule for calculating the score; it changes from place to
place and time to time. So the best approach is to collect
data and try to learn it.

Credit scoring can be defined as a regression problem;
historically the linear model, where the score of a customer
was written as a weighted sum of different attributes, was
frequently used. Each additional thousand dollars in sal-
ary increases the score by S points, and each additional
thousand dollars of debt decreases the score by D points,
where again the parameters S and D can be learned from
data. Once we have such a model, we can use it on a new
application to make a decision where depending on the
estimated score, different actions can be taken—for

	 Machine Learning, Statistics, and Data Analytics    57

example, a customer with a higher score may have a higher
limit on their credit card.

Instead of regression, credit scoring can also be
defined as a classification problem, where there are the two
classes of customers: low-risk and high-risk. Classification
is another type of supervised learning where the output is
a class code, as opposed to the numeric value we have in
regression.

A class is a set of instances that share a common prop-
erty, and in defining this as a classification problem, we
are assuming that all high-risk customers share some
common characteristics not shared by low-risk customers,
and that there exists a formulation of the class in terms of
those characteristics, called a discriminant. We can visual-
ize the discriminant as a boundary separating examples
of the two classes in the space defined by the customer
attributes.

As usual, we are interested in the case where we do
not know the underlying discriminant but have a sample
of example data, and we want to learn the discriminant
from data.

In preparing the data, we look at our past records,
and we label the customers who paid back their loans as
low-risk and those who defaulted as high-risk. Analyzing
this data, we would like to learn the class of high-risk cus-
tomers so that in the future, when there is a new applica-
tion for a loan, we can check whether or not the customer

58   chapter 2

matches that description and reject or accept the applica-
tion accordingly.

The information about a customer makes up the input
to the classifier whose task is to assign the input to one of
the two classes. Using our knowledge of the application,
let us say that we decide to take a customer’s income and
savings as input (see figure 3). We observe them because
we have reason to believe that they give us sufficient infor-
mation about the credibility of a customer.

One possible model defines the discriminant in the
form of if-then rules:

IF income < X AND savings < Y THEN high-risk ELSE
low-risk

where X and Y are the parameters fine-tuned to the data,
to best match the rule prediction with what the data tells
us (see figure 3).

In this model the parameters are these thresholds, not
weights as we have in the linear model. In regression, the
task is to find a line that passes as close as possible to the
data points; in classification, it is to fit a separating bound-
ary between the data points from different classes.

Each if-then rule specifies one composite condition
made up of terms, each of which is a simple condition on
one of the input attributes. The antecedent of the rule

	 Machine Learning, Statistics, and Data Analytics    59

High-risk

Low-risk

IncomeX

Y

S
av

in
g

s

Figure 3  Separating the low- and high-risk customers as a classification
problem. The two axes are the income and savings, each in its unit (e.g., in
thousands of dollars). Each customer, depending on their income and savings,
is represented by one point in this two-dimensional space, and their class is
represented by shape—a circle represents a high-risk customer and a square
represents a low-risk customer. All the high-risk customers have their income
less than X and savings less than Y, and hence this condition can be used as a
discriminant, whose shape is shown using thick lines.

60   chapter 2

is an expression containing terms connected with AND,
namely, a conjunction; that is, all the conditions should
hold for the rule to apply.

We understand from the rule that among the sub-
set of customers that satisfies the antecedent—namely,
those whose income is less than X and whose savings is
less than Y—there are more high-risk than low-risk cus-
tomers, so the probability of high risk for them is higher;
that is why the consequent of the rule has high-risk as its
label.

In this simple example, there is a single way of being
high-risk and all the remaining cases are low-risk, so one
rule is sufficient. In another application, there may be a
rule base that is composed of several if-then rules, each of
which delimits a certain region, and each class is specified
using a disjunction of such rules. There are different ways
of being high-risk, each of which is specified by one rule
and satisfaction of any of the rules is enough.

Learning such rules from data allows knowledge extrac-
tion. The rule is a simple model that explains the data and
looking at this model we have an explanation about the
process underlying the data. For example, once we learn
the discriminant separating the low-risk and high-risk
customers, we have knowledge about the properties of
low-risk customers. We can then use this information to
target potential low-risk customers more efficiently, such
as through customized advertising.

	 Machine Learning, Statistics, and Data Analytics    61

Expert Systems

Before machine learning was the norm, expert systems
existed. Proposed in 1970s and used in 1980s,3 they were
computer programs that aided humans in decision making.

An expert system is composed of a knowledge base
and an inference engine. The knowledge is represented as
a set of if-then rules, like the ones we discussed earlier,
and the inference engine uses logical inference rules for
deduction. The rules are programmed after consultation
with domain experts, and they are fixed. This process of
converting domain knowledge to if-then rules was manual,
and hence difficult and costly. The inference engine was
programmed in specialized programming languages such
as Lisp and Prolog, which are especially suited for logical
inference.

For a time in the 1980s, expert systems were quite
popular around the world, not only in the United States
(where Lisp was used), but also in Europe (where Prolog
was used). Japan had a Fifth Generation Computer Sys-
tems Project for massively parallel architectures for expert
systems and artificial intelligence (AI). There were applica-
tions, but in rather limited domains, such as MYCIN for
diagnosing infectious diseases (Buchanan and Shortliffe
1984); commercial systems also existed.

Despite the research and the wide interest, expert
systems never took off. There are basically two reasons

62   chapter 2

for this. First, the knowledge base needed to be created
manually through a very laborious process; there was no
learning from data. The second reason was the unsuitabil-
ity of logic to represent the real world. In real life, things
are not true or false, but have grades of truth: a person
is not either old or not old, but oldness increases gradu-
ally with age. The logical rules too may apply with different
degrees of certainty: “If X is a bird, X can fly” is mostly true
but not always.

To represent degrees of truth, fuzzy logic was proposed
with fuzzy memberships, fuzzy rules, and inference, and
since its inception, had some success in a variety of appli-
cations (Zadeh 1965). Another way to represent uncer-
tainty is to use probability theory, as we do in this book.

Machine learning systems that we discuss in this
book are extensions of expert systems in decision making
in two ways: first, they need not be programmed but can
learn from examples, and second, because they use prob-
ability theory, they are better in representing real-world
settings with all the concomitant noise, exceptions, ambi-
guities, and resulting uncertainty.

Expected Values

When we make a decision—for example, when we choose
one of the classes—we may be correct or wrong. It may be

	 Machine Learning, Statistics, and Data Analytics    63

the case that correct decisions are not equally good and
wrong decisions are not equally bad. When making a deci-
sion about a loan applicant, a financial institution should
take into account both the potential gain as well as the
potential loss. An accepted low-risk applicant increases
profit, while a rejected high-risk applicant decreases loss.
A high-risk applicant who is erroneously accepted causes
loss, and an erroneously rejected low-risk applicant is a
missed chance for profit.

The situation is much more critical and far from sym-
metrical in other domains, such as medical diagnosis. Here,
the inputs are the relevant information we have about the
patient and the classes are the illnesses. The inputs con-
tain the patient’s age, gender, past medical history and
current symptoms. Some tests may not have been applied
to the patient, and these inputs would be missing. Tests
take time, are costly, and may inconvenience the patient,
so we do not want to apply them unless we believe they
will give us valuable information.

In the case of medical diagnosis, a wrong decision may
lead to wrong or no treatment, and the different types of
error are not equally bad. Let us say we have a system that
collects information about a patient and based on those,
we want to decide whether the patient has a certain dis-
ease (say a certain type of cancer) or not. There are two
possibilities: either the patient has cancer—let us call it
the positive class—or not—the negative class.

64   chapter 2

Similarly, there are two types of errors (see table 2). If
the system predicts cancer but in fact the patient does not
have it, this is a false positive—the system chooses the pos-
itive class wrongly. This is bad because it will cause unnec-
essary treatment, which is both costly and inconvenient
for the patient. If the system predicts no disease when in
fact the patient has it, this is a false negative. A false nega-
tive has a higher cost than a false positive because then
the patient will not get the necessary treatment. Because
the cost of a false negative is so much larger than the cost
of a false positive, we would choose the positive class—to
start a closer investigation—even if the probability of the
positive class is relatively small. This is not like predict-
ing a coin toss where we choose the outcome—heads or
tails—whose probability is higher than ½ (because the
two possible wrong guesses are equally bad).

Table 2  Different types of errors in decision making

Action

Truth Choose positive
(start treatment)

Choose negative
(discharge the patient)

Sum

Positive
(the patient has cancer)

TP:
True positive

FN:
False negative

P

Negative
(the patient does not
have cancer)

FP:
False positive

TN:
True negative

N

Sum P′ N′

	 Machine Learning, Statistics, and Data Analytics    65

This is the basis of expected value calculation where
not only do we decide by using probabilities, but we also
take into account the possible loss or gain we may face as a
result of our decision. Though expected value calculation
is frequently done in many domains, such as in insurance,
it is known that people do not always act rationally; if that
were the case, no one would buy a lottery ticket!

In Max Frisch’s novel Homo Faber, the mother of a girl
who was bitten by a snake is told not to worry because the
mortality from snakebites is only 3–10 percent. The woman
gets angry and says, “If I had a hundred daughters . . . then
I should lose only three to ten daughters. Amazingly few!
You’re quite right,” and then she continues, “I’ve only
got one child.” We need to be careful in using expected
value calculation when ethical matters are involved;
later on for the case of self-driving cars, we will get back
to ethical and also legal aspects of automated decision
making.4

If both false positive and false negative have high
costs, a possible third action is to reject and defer deci-
sion. For example, if computer-based diagnostics cannot
choose between two outcomes, it can opt to reject, and the
case can be decided manually; the human expert can make
use of additional information not directly available to the
system. In an automated mail sorter, if the system cannot
recognize the numeric zip code on an envelope, the postal
worker can also read the address.

66   chapter 2

In classification, when false positives and false nega-
tives are equally bad, their sum, FP + FN, gives us the num-
ber of misclassifications. For example, let us say we have a
visual recognition system that separates cars from tanks,
and let us assume cars make up the positive class. Then
FP is the number of tanks classified as cars and FN is the
number of cars classified as tanks. Their sum divided by
the total number of images, (FP + FN)/(P + N), is the clas-
sification error, or equivalently, (TP + TN)/(P + N), is the
classification accuracy.

In other applications, the performance criterion can
be different. Let us envisage an application where people
are allowed to access their bank accounts by their voice. A
false positive is an allowed impostor and a false negative
is a valid user that is denied service. The former is much
worse than the second. The hit rate, or the true-positive
rate, measures what proportion of valid users is correctly
authenticated, TP/P, and false alarm rate, or false-positive
rate, measures what proportion of impostors are wrongly
authenticated, FP/N.

There is a trade-off between the two. If we modify our
classifier so that it chooses the positive class more easily,
this increases the hit rate, but also risks increasing the
false alarm rate. In deciding when to choose which class,
we want to make the hit rate as large as possible while
keeping the false alarm rate as small as possible.

	 Machine Learning, Statistics, and Data Analytics    67

In information retrieval, we have a query—for example,
defined using keywords—and we want to retrieve records
that match the query from a database. For example, let
us say we want to retrieve images of tigers using the
keyword “tiger” from a database of images. In such a case,
an image that is retrieved corresponds to assignment
to the positive class and an image that is not retrieved
corresponds to assignment to the negative class. In this
case, TP corresponds to the number of tiger images that are
retrieved, and FN to the number of tiger images that exist
in the database but are not retrieved. FP is the number of
images that are retrieved but are not tiger images.

In this scenario, we have two performance criteria.
Precision is the ratio of true positives to all the retrieved
instances, namely, TP/P’ = TP/(TP + FP), that is, what
percentage of the retrieved instances are really relevant,
that is, match the query. Recall is the ratio of true
positives to all the positive instances, namely, TP/P, that
is, what percentage of the relevant instances are actually
retrieved.

We want both precision and recall to be as close to 1
as possible: If precision is 1, all the retrieved records may
be relevant but there may still be relevant records that
are not retrieved. If recall is 1, all the relevant records are
retrieved but there may also be other retrieved irrelevant
records (see figure 4). Again, we see the trade-off between

68   chapter 2

precision and recall. We can always increase recall by
retrieving more images but that risks decreasing precision.

We see that unlike in classification, we do not care
about the true negatives here; those are non-tiger images
that are correctly not retrieved; in retrieval we do not
care about those, their number can increase or decrease
depending on the size and scope of the database without
affecting our performance assessment.

In other domains—for example, in medicine—people
use the measures of sensitivity and specificity. Sensitivity
is the same as recall, which measures how well we detect
the positives. Specificity is how well we detect the nega-
tives, which is TN/N—it is equal to 1 – false alarm rate.
For example, let us say we have developed a test for a
virus: Sensitivity is how well the test catches the people

Retrieved
instances

Relevant
instances

TN

TPFP FN

Figure 4  Precision and recall explained in terms of Venn diagrams.
Precision is TP/(TP + FP) and recall is TP/(TP + FN).

	 Machine Learning, Statistics, and Data Analytics    69

who have the virus and specificity is how well it is silent
on people who do not have the virus.

In this chapter, we have discussed the basics of
machine learning in general; in the next chapter, we will
cover one type of learning, supervised learning, that finds
use, for example, in recognizing patterns such as faces and
speech.

3

PATTERN RECOGNITION

Learning to Read

Different automatic visual recognition tasks have differ-
ent complexities. One of the simplest is the reading of bar-
codes where information is represented in terms of lines of
different widths, which are shapes that are easy to recog-
nize. The barcode is a simple and efficient technology: It is
easy to print barcodes, and it is also easy to build scanners
to read them; that is why they are still widely used. But the
barcode is not a natural representation, and the informa-
tion capacity is limited; recently two-dimensional matrix
barcodes have been proposed where more information can
be coded in a smaller area; for example, QR codes that can
be scanned by a smartphone point to a website.

There is always a trade-off in engineering. When the
task is difficult to solve, we can devise more efficient

72   chapter 3

solutions by constraining it. For example, the wheel is
a very good solution for transportation, but it requires
flat surfaces and so roads too have to be built. The con-
trolled environment makes the task easier. Legs work in
a variety of terrains, but they are more difficult to build
and control, and they can carry a significantly less heavy
load.

Optical character recognition is recognizing printed or
written characters from their images. This is more natural
than barcodes because no extra coding (in terms of bars)
is used. If a single font is used, there is a single way of
writing each character; there are standardized fonts such
as OCR-A, defined specifically to make automatic recogni-
tion easier.

With barcodes or a single font, a single template exists
for each class and there is no need for learning. For each
character, we have a single prototype that we can simply
store. It is the ideal image for that character, and we com-
pare the seen input with all the prototypes one by one and
choose the class with the best matching prototype—this
is called template matching. There may be errors in print-
ing or sensing, but we can do recognition by finding the
closest match.

If we have many fonts or handwritings, we have mul-
tiple ways of writing the same character, and we cannot
possibly store all of them as possible templates. Instead,
we want to “learn” the class by going over all the different

	 Pattern Recognition    73

examples of the same character and find some general
description that covers all of them.

It is interesting that though writing is a human inven-
tion, we do not have a formal description of ‘A’ that cov-
ers all ‘A’s and none of the non-‘A’s. Not having it, we take
samples from different writers and fonts, and learn a defi-
nition of ‘A’-ness from these examples. But though we do
not know what it is that makes an image an instance of
the class ‘A’, we are certain that all those distinct ‘A’s have
something in common, which is what we want to extract
from the examples.

We know that a character image is not just a collection
of random dots and strokes of different orientations, but
it has a regularity that we believe we can capture by using
a learning program. For each character, we see examples in
different fonts (for printed text) or writings (for handwrit-
ten text) and generalize; that is, we find a description that
is shared by all of the examples of a character: ‘A’ is one
way of combining a certain set of strokes, ‘B’ is another
way, and so on.

Recognition of printed characters is relatively easy
with the Latin alphabet and its variants; it is trickier with
alphabets where there are more characters, accents, and
writing styles. In cursive handwriting, characters are con-
nected and there is the additional problem of segmentation.

Many different fonts exist, and people have different
handwriting styles. Characters may also be small or large,

74   chapter 3

slanted, printed in ink or written with a pencil, and as a
result, many possible images can correspond to the same
character. Despite all the research, there is still no com-
puter program today that is as accurate as humans for this
task. That is why captchas are still used, a captcha being
a corrupted image of words or numbers that needs to be
typed to prove that the user is a human and not a com-
puter program.

Matching Model Granularity

In machine learning, the aim is to fit a model to the data.
In the ideal case, we have one single, global model that
applies to all of the instances. For all cars, as we saw in
chapter 2, we have a single regression model that we can
use to estimate the price. In such a case, the model is
trained with the whole training data and all the instances
have an effect on the model parameters. In statistics, this
is called parametric estimation.

The parametric model is good because it is simple—we
store and calculate a single model—and it is trained with
the whole data. Unfortunately, it may be restrictive in the
sense that this assumption of a single model applicable
to all cases may not hold in all applications. In certain
tasks, we may have a set of local models, each of which

	 Pattern Recognition    75

is applicable to a certain type of instances. This is semi-
parametric estimation. We still have a model that maps the
input to the output but is valid only locally, and for differ-
ent type of inputs we have different models.

For example, in estimating the price of used cars, we
may have one model for sedans, another model for sports
cars, and another for luxury cars, if we have reason to
believe that for these different types of cars, the depre-
ciation behaviors are different. In such an approach, each
local model is trained only with the training data that
falls within its scope—the number of local models is the
hyperparameter defining the model flexibility and hence
complexity.

In certain applications, even the semi-parametric
assumption may not hold; that is, the data may lack a
clear structure and it cannot be explained in terms of a
few local models. In such a case, we use the other extreme
of nonparametric estimation where we assume no simple
model, either globally or locally. The only information we
use is the most basic assumption—namely, that similar
inputs have similar outputs. In such a case, we do not have
an explicit training process that converts training data to
model parameters; instead, we just keep the training data
as the sample of past cases.

Given an instance, we find the training instances that
are most similar to the query and we calculate an output in

76   chapter 3

terms of the known outputs of these past similar instances.
For example, given a car whose price we want to estimate,
we find among all the training instances the three cars that
are most similar—in terms of the attributes we use—and
then calculate the average of the prices of these three cars
as our estimate. Because those are the cars that are most
similar in their attributes, it makes sense that their prices
should be similar too. This is called k-nearest neighbor esti-
mation where here k is three. Since those are the three
most similar past “cases,” this approach is sometimes
called case-based reasoning. The nearest-neighbor algo-
rithm is intuitive: similar instances mean similar things.
We all love our neighbors because they are so much like
us—or we hate them, as the case may be, for exactly the
same reason.

Generative Models

An approach that has recently become very popular in data
analysis is to consider a generative model that represents
our belief as to how the data is generated. We assume
that there is a hidden model with a number of hidden, or
latent, causes that interact to generate the data we observe.
Though the data we observe may seem big and compli-
cated, it is produced through a process that is controlled
by a few variables, which are the hidden factors, and if we

	 Pattern Recognition    77

can somehow infer these, the data can be represented and
understood in a much simpler way. Such a simple model, if
it is appropriately chosen and well trained, can also make
accurate predictions.

Consider optical character recognition. Generatively
speaking, we can say that each character image is com-
posed of two types of factors: there is the identity, namely
the label of the character, and there is the appearance,
those that are due to the process of writing or printing.

In a printed text, the appearance part may be due to
the font; for example, characters in Times Roman font
have serifs and strokes that are not all of the same width.
The font is an aesthetic concern; in calligraphy, it is the
aesthetic part that becomes especially prominent. Just
like the choice of font in printed text, the handwriting
style of the writer introduces variance in written text.
But these added characteristics due to appearance should
not be large enough to cause confusion about the iden-
tity, otherwise we say that the person has a bad or illegible
handwriting. The appearance also depends on the material
the writer is using (e.g., pen versus pencil) and also on the
medium (e.g., paper versus marble slab).1

The printed or written character may be large or small,
and this is generally handled at a preprocessing stage of
normalization where the character image is converted to
a fixed size—we know that the size does not affect the
identity. This is called invariance. We want invariance to

78   chapter 3

size (whether the text is 12pt or 18pt, the content is the
same) or invariance to slant (as when the text is in italics)
or invariance to the width of strokes (as in bold charac-
ters). But, for example, we do not want invariance to large
rotations: q is a rotated b.

In recognizing the class, we need to focus on the
identity, and we should find attributes that represent the
identity, and learn how to combine them to represent the
character. We treat all the attributes that relate to the
appearance, namely the writer, aesthetics, medium, and
sensing, as irrelevant and learn to ignore them. But note
that in a different task, those may be the important ones;
for example, in authentication of handwriting or in sig-
nature recognition, it is the writer-specific attributes that
become important and not the content.

The generative model is causal in that it explains how
the data is generated by hidden factors that cause it. Once
we have such a model trained, we may want to use it for
diagnostics, which implies going in the opposite direction,
that is, from observation to cause. Medical domain is a
good example here: the diseases are the causes and they
are hidden; the symptoms are the observed attributes of
the patient, such as the results of medical tests. Going
from disease to symptom is the causal direction—that is
what the disease does; going from symptom to disease is
diagnostics—that is what the doctor does. In the general

Going from disease
to symptom is the
causal direction—that
is what the disease
does; going from
symptom to disease is
diagnostics—that is
what the doctor does.

80   chapter 3

case, diagnostics is the inference of hidden factors from
observed variables.

A generative model can be represented as a graph com-
posed of nodes that correspond to hidden and observed
variables, and the arcs between nodes represent depen-
dencies between them, such as causalities. Such graphical
models are interesting in that they allow a visual represen-
tation of the problem, and statistical inference and esti-
mation procedures can be mapped to well-known graph
operations for which we already have efficient procedures
in computer science (Koller and Friedman 2009).

In a graphical model, a causal link goes from a hidden
factor to an observed symptom, while a diagnostics effec-
tively inverts the direction of the link. We use conditional
probability to model the dependency, and for example,
when we talk about the conditional probability that a
patient has a runny nose given that they have the flu, we
go in the causal direction: the flu causes the runny nose
(with a certain probability).

If we have a patient and we know they have a runny
nose, we need to calculate the conditional probability in
the other direction—namely, the probability that they
have the flu given that they have a runny nose (see fig-
ure 5). In probability, the two conditional probabilities are
related because of the Bayes’ rule,2 and that is why graphi-
cal models are sometimes also called Bayesian networks.
In a later section, we return to Bayesian estimation; we

	 Pattern Recognition    81

see that we can also include the model parameters in such
networks and that this allows additional flexibility.

If we are reading a text, one factor we can make use
of is the language information. A word is a sequence of
characters, and we rarely write an arbitrary sequence
of characters; we choose a word from the lexicon of the
language. This has the advantage that even if we cannot
recognize a character, we can still read t?e word. Such
contextual dependencies may also occur at higher levels,
between words and sentences as defined by the syntac-
tic and semantic rules of the language. Machine learning

Runny nose

Flu

Causal Diagnostics

Figure 5  The graphical model showing that the flu is the cause of a runny
nose. If we know that the patient has a runny nose and want to check the
probability that they have the flu, we are doing diagnostics by making
inference in the opposite direction (using Bayes’ rule). We can form larger
graphs by adding more nodes and links to show increasingly complicated
dependencies.

82   chapter 3

algorithms help us learn such dependencies for natural
language processing, as we discuss shortly.

Face Recognition

In the case of face recognition, the input is the image cap-
tured by a camera and the classes are the people to be rec-
ognized. The learning program should learn to match the
face images to their identities. This problem is more dif-
ficult than optical character recognition because the input
image is larger, a face is almost three-dimensional, and dif-
ferences in pose and lighting cause significant changes in
the image. Certain parts of the face may also be occluded;
glasses may hide the eyes and eyebrows, and a beard may
hide the chin.

Just as in character recognition, we can think of two
sets of factors that affect the face image: there are the fea-
tures that define the identity, and there are features that
have no effect on the identity but affect appearance, such
as hairstyle; or expression (namely, neutral, happy, angry,
and so forth). These appearance features may also be due
to hidden factors that affect the captured face image, such
as the source of illumination or the pose. If we are inter-
ested in the identity, we want to learn a face description
that uses only the first type of features, learning to be
invariant to features of the second type.

	 Pattern Recognition    83

However, we may be interested in the second type of
features for other tasks. Recognizing facial expressions
allows us to recognize emotions, as opposed to identity.
For example, during a video monitoring a meeting, we
may want to keep track of the mood of the participants.
Likewise, in online education, it is important to under-
stand whether the student is confused or gets frustrated,
to better adjust the speed of presenting the material. In
affective computing, which is a field that is rapidly becom-
ing popular, the aim is to have computer systems that can
recognize and take into account human affects, that is, the
observed manifestations of emotions.

If the aim is identification or authentication of peo-
ple—for example, for security purposes—using the face
image is only one of the possibilities. Biometrics is rec-
ognition or authentication of people using their physi-
ological and/or behavioral characteristics. In addition to
the face, examples of physiological characteristics are the
fingerprint, iris, and palm; examples of behavioral char-
acteristics include the dynamics of signature, voice, gait,
and keystroke. For more accurate decisions, inputs from
different modalities can be integrated. When there are
many different input sources—as opposed to the usual
identification procedures of photo, printed signature, or
password—forgeries (spoofing) becomes more difficult
and the system more accurate, hopefully without too
much inconvenience to the users.

84   chapter 3

Speech Recognition

In speech recognition, the input is the acoustic signal cap-
tured by a microphone and the classes are the words that
can be uttered. This time the association to be learned is
between an acoustic signal and a word of some language.

Just as we can consider each character image to be
composed of basic primitives like strokes of different ori-
entations, a word is made up of phonemes, which are the
basic speech sounds. In the case of speech, the input is
temporal; words are uttered in time as a sequence of these
phonemes, and some words are longer than others.

Different people, because of differences in age, gen-
der, or accent, pronounce the same word differently, and
again, we may consider each word sound to be composed
of two sets of factors, those that relate to the word and
those that relate to the speaker. Speech recognition uses
the first type of features, whereas speaker authentication
uses the second. Incidentally, this second type of features
(those relating to the speaker) is not easy to recognize or
to artificially generate—that is why the output of speech
synthesizers still sounds “robotic.”3

Just as in biometrics, researchers here also rely on the
idea of combining multiple sources. For example, to rec-
ognize speech, in addition to the acoustic information, we
can also use the video image of the speaker’s lips and the
shape of the mouth as they speak the words.

	 Pattern Recognition    85

Natural Language Processing and Translation

In speech recognition, as in optical character recogni-
tion, the integration of a language model taking contextual
information into account helps significantly. Decades of
research on programmed rules in computational linguis-
tics have revealed that the best way to come up with a lan-
guage model (defining the lexical, syntactic, and semantic
rules of the language) is by learning it from some large cor-
pus of example data. The applications of machine learning
to natural language processing are constantly increasing;
see Hirschberg and Manning 2015 for a recent survey, or
Eisenstein 2019 for a textbook on the topic.

One of the easier applications is spam filtering, where
spam generators on one side and filters on the other side
keep finding more and more ingenious ways to outdo each
other. This is a classification problem with two classes,
spam and legitimate emails. A similar application is docu-
ment categorization where we want to assign text docu-
ments to one of several categories, such as arts, culture,
politics, and so on.

A face is an image and a spoken sentence is an acous-
tic signal, but what is in a text? A text is a sequence of
characters, but characters are defined by an alphabet and
the relationship between a language and the alphabet is
not straightforward. The human language is a very com-
plex form of information representation with its lexical,

86   chapter 3

syntactic, and semantic rules at different levels, together
with its subtleties such as humor and sarcasm, not to men-
tion the fact that a sentence almost never stands or should
be interpreted alone, but is part of some dialogue or gen-
eral context.

The easiest method for representing a text is the bag
of words representation where we predefine a large vocab-
ulary of words and then we represent each document by
using a list of the words that appear anywhere in the docu-
ment. That is, of the words we have chosen, we note which
ones appear in the document and which ones do not. We
lose the position of the words in the text, which may be
good or bad depending on the application. In choosing
a vocabulary, we choose words that are indicative of the
task; for example, in spam filtering, words such as “oppor-
tunity” and “offer” are discriminatory. There is a prepro-
cessing step where suffixes (e.g., “-ing,” “-ed”) are removed,
and where noninformative words (e.g., “the,” “of”) are
ignored.

Recently, analyzing messages on social media has
become an important application area of machine learn-
ing. Analyzing posts to extract trending topics is one: this
implies a certain novel combination of words that has
suddenly started to appear a lot. Another task is sentiment
analysis, that is, determining whether a customer is happy
or not with a product (e.g., a politician). For this, one can
define a vocabulary containing words indicative of the

	 Pattern Recognition    87

two classes—happy versus not happy—using the bag of
words representation and learn how they affect the class
descriptions.

Perhaps the most impressive application of machine
learning is machine translation. After decades of research
on hand-coded translation rules, it has become appar-
ent that the most promising approach is to provide a
very large sample of pairs of texts in both languages and
to have a learning program automatically figure out the
rules to map one to the other. In bilingual countries such
as Canada, and in the European Union with its many offi-
cial languages, it is relatively easy to find the same text
carefully translated in two or more languages. Such data is
used by machine learning approaches to translation.

In chapter 4, we will discuss deep learning, which shows
a lot of promise for this task, in automatically learning the
different layers of abstraction that are necessary for proc-
essing natural language.

Combining Multiple Models

In any application, we can use any one of various learn-
ing algorithms and instead of trying to choose the single
best one, a better approach may be to use them all and
combine their predictions. We saw before that each algo-
rithm comes with a set of assumptions, which we called its

88   chapter 3

inductive bias, and each one may hold true on a different
subset of the data. So we do not want to “put all our eggs
in the same basket” but use them all.

For best accuracy, the different models we combine
should be good by themselves and at the same time diverse
to best complement each other. This is just like in real life
where the best committee is composed of people having
different areas of expertise; it makes no sense to consult
multiple people if they all have very similar educations or
backgrounds.4

One way to get diversity is by having models look
at different sources of information. We already saw this
in biometrics where the different models take different
characteristics—for example, face, fingerprints, and so
on—as input, and in speech recognition where in addi-
tion to the acoustic speech signal we also keep track of the
speaker’s lip.

Today, most of our data is multimedia, and multi-view
models can be used in a variety of contexts where we have
different sensors providing different but complemen-
tary information. In image retrieval, in addition to the
image itself, we may also have a text description or a set
of tag words. Using both sources together leads to better
retrieval performance. Our smart devices, such as smart
watches and smartphones, are equipped with sensors,
and their readings can be combined for the purpose of, for
example, activity recognition.

	 Pattern Recognition    89

Outlier Detection

Another application area of machine learning is outlier
detection, where the aim this time is to find instances that
do not obey the general rule—those are the exceptions
that are informative in certain contexts. The idea is that
typical instances share characteristics that can be simply
stated, and instances that do not have them are atypical.

In Anna Karenina, Tolstoy writes, “All happy fami-
lies resemble one another, but each unhappy family is
unhappy in its own way.” This holds true in many domains,
and not only for the case of nineteenth-century Russian
families. For example, in medical diagnosis, we can simi-
larly say that all healthy people are alike and that there are
different ways of being unhealthy—each one of them is
one disease.

In such a case, the model covers the typical instances
and then any instance that falls outside is an exception.
An outlier is an instance that is very much different from
other instances in the sample. An outlier may indicate an
abnormal behavior of the system; for example, for a credit
card transaction, it may indicate fraud; in an image, an
outlier may indicate an anomaly requiring attention, for
example, a tumor; in the case of network traffic, it may be
an intrusion attempt by a hacker; in a health-care scenario,
it may indicate a significant deviation from a patient’s
normal behavior. Outliers may also be recording errors

90   chapter 3

(e.g., due to faulty sensors) that should be detected and
discarded to get reliable statistics. An outlier may also be a
novel, previously unseen but valid case, which is where the
related term, novelty detection, comes into play. For exam-
ple, it may be a new type of profitable customer, indicating
a new niche in the market waiting to be exploited by the
company.

Dimensionality Reduction

In any application, observed data attributes that we believe
contain information are taken as inputs and are used for
decision making. However, it may be the case that some of
these features actually are not informative at all, and they
can be discarded; for example, it may turn out that the
color of a used car does not have a significant effect on its
price. Or, it may be the case that two different attributes
are correlated and say basically the same thing (e.g., the
production year and mileage of a used car are highly cor-
related), so keeping one may be enough.

We are interested in dimensionality reduction in a sepa-
rate preprocessing step for a number of reasons:

First, in most learning algorithms, both the complex-
ity of the model and the training algorithm depend on the
number of input attributes. Here, complexity is of two
types: the time complexity, which is how much calculation

	 Pattern Recognition    91

we do, and the space complexity, which is how much
memory we need. Decreasing the number of inputs always
decreases both, but how much they decrease depends on
the particular model and the learning algorithm.

Second, when an input is deemed unnecessary, we
save the cost of measuring it. For example, in medical
diagnosis, if it turns out that a certain test is not needed,
we do not do it, thereby eliminating both the monetary
cost and the patient discomfort.

Third, simpler models are more robust on small data
sets; that is, they can be trained with fewer data; or
when trained with the same amount of data, they have
smaller variance in their response, which indicates lower
uncertainty.

Fourth, when data can be explained with fewer fea-
tures, we have a simpler model that is easier to interpret.

Fifth, when data can be represented in few (e.g, two)
dimensions, it can be plotted and analyzed visually, for
structure and outliers, which again helps facilitate knowl-
edge extraction from data. A plot is worth a thousand dots,
and if we can find a good way to display the data, our visual
cortex can do the rest, without any need for model fitting
calculation.

There are basically two ways to achieve dimensionality
reduction: feature selection and feature extraction. In fea-
ture selection, we keep the important features and discard
the unimportant ones. It is basically a process of subset

92   chapter 3

selection where we want to choose the smallest subset of
the set of input attributes leading to maximum perfor-
mance. The most widely used method for feature selection
is the wrapper approach, where we iteratively add features
until there is no further improvement. The feature selec-
tor is “wrapped around” the basic classifier or regressor
that is trained and tested with each subset.

In feature extraction, we define new features that are
calculated from the original features. These newly calcu-
lated features are fewer in number but still preserve the
information in the original features. Those few synthe-
sized features explain the data better than any of the origi-
nal attributes, and sometimes they may be interpreted as
hidden or abstract concepts.

In projection methods, each new feature is a linear
combination of the original features; one such method is
principal component analysis where we find new features
that preserve the maximum amount of variance of the
data. If the variance is large, the data has large spread mak-
ing the differences between the instances most apparent,
whereas if the variance is small, we lose the differences
between data instances. The other method, linear discrim-
inant analysis is a form of supervised feature extraction
where the aim is to find new features that maximize the
separation between classes.

Whether one should use feature selection or extrac-
tion depends on the application and the granularity of

	 Pattern Recognition    93

the features. If we are doing credit scoring and have fea-
tures such as customer age, income, profession, and so
on, feature selection makes sense. For each feature, we
can say whether it is informative or not by itself. But a
feature projection does not make sense: what does a lin-
ear combination (weighted sum) of age, income, and pro-
fession mean? On the other hand, if we are doing face
recognition and the inputs are pixels, feature selection
does not make sense—an individual pixel by itself does
not carry discriminative information. It makes more
sense to look at particular combinations of pixels in defin-
ing a face, as is done by feature extraction; for example,
a region in image may define a particular type of eye
or nose.

Nonlinear dimensionality reduction methods go be-
yond a linear combination and can find better features;
this is one of the hottest topics in machine learning. The
ideal feature set best represents the (classification or re-
gression) information in the data set using the fewest
numbers, and it is a process of encoding. It may also be
considered as a process of abstraction because these new
features can correspond to higher-level features repre-
senting the data in a more concise manner. In chapter 4,
we will discuss autoencoder networks and deep learning
where this type of nonlinear feature extraction is learned
in artificial neural networks.

94   chapter 3

Decision Trees

Previously we discussed if-then rules and one way to learn
such rules is by decision trees. The decision tree is one of
the oldest methods in machine learning and though sim-
ple in both training and prediction, it is accurate in many
domains. Trees use the famous “divide and conquer” strat-
egy popular since Caesar where we divide a complex task—
for example, governing Gaul—into simpler, regional tasks.
Trees are used in computer science frequently for the
same reason, namely to decrease complexity, in all sorts
of applications.

Earlier we covered nonparametric estimation where, as
you will remember, the main idea is to find a subset of the
neighboring training examples that are most similar to
the new query. In k-nearest-neighbor algorithms, we do
this by storing all the training data in memory, calculating
one by one the similarity between the new test query and
all the training instances, and choosing the k most similar
ones. This is rather a complex calculation when the train-
ing data is large, and it may be infeasible when the data
is big.

The decision tree finds the most similar training in-
stances by a sequence of tests on different input attributes.
The tree is composed of decision nodes and leaves; starting
from the root, each decision node applies a splitting test
to the input and depending on the outcome, we take one

	 Pattern Recognition    95

of the branches. When we get to a leaf, the search stops
and we understand that we have found the most similar
training instances, and we interpolate from those (see
figure 6).

Each path from the root to a leaf corresponds to a con-
junction of test conditions in the decision nodes on the path
and such a path can be written as an if-then rule. That is one
of the advantages of the decision tree: that a tree can be
converted to a rule base of if-then rules and that those rules
are easy to interpret. The tree is trained with a given train-
ing data where splits are placed to delimit regions that have

No

No

Savings < Y

Income < X

High-risk Low-risk

Low-risk

Yes

Yes

Figure 6  A decision tree separating low- and high-risk customers. This tree
implements the discriminant shown in figure 3.

96   chapter 3

the highest “purity,” in the sense that each region contains
instances that are similar in terms of their output.

Decision tree learning is nonparametric—we do not
have a model where the structure is assumed a priori and we
only update the parameters of that fixed structure; a deci-
sion tree grows as needed and its size depends on the com-
plexity of the problem underlying the data; for a simple task,
the tree is small, whereas a difficult task grows a large tree.

There are different decision tree models and learning
algorithms depending on the splitting test used in the
decision nodes and the interpolation done at the leaves;
one very popular current approach is the random forest,
where we train many decision trees on randomly chosen
different subsets of the training data and we combine their
predictions by taking a vote.

Trees are used successfully in various machine learn-
ing applications, and together with the linear model, the
decision tree should be taken as one of the basic bench-
mark methods before any more complex learning algo-
rithm is tried.

Active Learning

In learning, it is critical that the learner also knows what it
knows and what it does not know. When a trained model

	 Pattern Recognition    97

makes a prediction, it is helpful if it can also indicate its
certainty in that prediction.

One easy way to do this is by resampling.
Let us say that we want to be able to predict the price

of a used car and we have a data set of 100 examples. Let
us choose randomly 80 examples from that data and using
those we train our first model. Then we can choose another
random subset of 80 examples from the original data set
and train a second model. The two data sets will be simi-
lar but not the same, and so the two fitted models will be
similar in their predictions but not the same.

We can do this for example ten times and get ten mod-
els. Later on, when we are given a new car, we can give its
mileage as input to all ten models and get ten predictions.
They will be slightly different because each one has been
trained on a slightly different data set. We can then use the
average of those ten values as our point estimate; we can
also sort those ten estimates from the smallest to the larg-
est and define an interval, the so-called confidence interval,
from the minimum to the maximum (in practice, it is bet-
ter to discard the two extreme values at either end and
use the interval from the second to the ninth). The size of
that interval is a measure of our predictive uncertainty; if
it is large we understand that our prediction is very much
affected by slight changes in the data and hence is not too
reliable.

98   chapter 3

The important point here is that data points are not
created equal and our data may not be uniform all over
the input space. For example, we may have a lot of cars in
the training set with mileage less than 100K but not many
cars with more.

In the case of estimation, in regions of the input space
where we have a lot of data, we will have many training
examples which means that all ten sets will have instances
from there, which in turn implies that we would expect
the ten models to make similar predictions in there and
hence the confidence interval for any input there will be
small. Where we have few data in the input space, it may
be possible that there will not be examples in the training
data of all of the ten models, and hence the predictions of
the ten models can be expected to vary more and we will
have a larger confidence interval.

So where the confidence interval is large, the uncer-
tainty is understood to be large, and the model can actively
ask the supervisor to provide training examples in there.
This is called active learning. The model generates inqui-
ries by synthesizing new inputs and asks for them to be
supplied, rather like a student asking a question during a
lecture.

For example, very early on in artificial intelligence, it
was realized that in classification the most informative
examples are those that lie closest to the current estimate
of the class boundary: a near miss is an instance that looks

	 Pattern Recognition    99

very much like a positive example but is actually a negative
example (Winston 1975).

A related research area in machine learning is called
computational learning theory, where work is done to find
theoretical bounds for learning algorithms that hold in
general, independent of the particular learning task. For
example, for a given model and learning algorithm, we may
want to know the minimum number of training instances
needed to guarantee at most a certain error with high
enough probability—this is called probably approximately
correct learning (Valiant 1984).

Learning to Rank

Ranking is an application area of machine learning that
is different from regression or classification, and that is
sort of between the two. In classification and regression,
for each instance, we have a desired absolute value for the
output; in ranking we train on pairs of instances and are
asked to have the outputs for the two in the correct order.

Let us say we want to learn a recommendation model for
movies. For this task, the input is composed of the attri-
butes of the movie. The output is a numeric score that is
a measure of how much we believe that a particular cus-
tomer will enjoy a particular movie. To train such a model,
we use past ratings by that customer. If we know that the

100   chapter 3

customer liked movie A more than movie B in the past, we
do our training such that for that customer the estimated
score for A is indeed a higher value than the estimated
score for B. Then, later on when we use that model to make
a recommendation based on the highest scores, we expect
to choose a movie that is more similar to A than to B.

There is no required numeric value for the score, as we
have for the price of a used car, for example. The scores
can be in any range as long as the ordering is correct. The
training data is not given in terms of absolute values but
in terms of such rank constraints (Liu 2011).

We can note here the advantage and difference of a
ranker over a classifier or a regressor. If users rate the mov-
ies they have seen as enjoyed versus not enjoyed, this will
be a two-class classification problem and a classifier can be
used, but taste is nuanced, and a binary rating is hard to
come by. On the other hand, if people rate their enjoyment
of each movie on a scale of, say, from 1 to 10, this will be a
regression problem, but such values are difficult to assign.
It is more natural and easier for people to say of the two
movies they watched which one they enjoyed more. After
the ranker is trained with all such pairs, it is expected to
generate numeric scores satisfying all these constraints.

Ranking has many applications. In search engines, we
want to retrieve the most relevant documents when given
a query. When we retrieve and display the current top ten
candidates, if the user clicks the third one skipping the

	 Pattern Recognition    101

first two, we understand that the third should have been
ranked higher than the first and the second. Such click logs
are used to train rankers.

Bayesian Methods

In certain applications and with certain models, we may
have some prior belief about the possible values of param-
eters. When we toss a coin, we expect it to be a fair coin or
close to being fair, so we expect the probability of heads
to be close to ½; in estimating the price of a car, we expect
mileage to have a negative effect on the price. Bayesian
methods allow us to take such prior beliefs into account
in estimating the parameters.5 The idea in Bayesian estima-
tion is to use that prior knowledge together with the data
to calculate a posterior distribution for the parameters. Let
us see an example.

Assume we want to estimate the probability that
people will click a certain link on our company’s webpage;
toward that end, we collect a sample of ten visitors and
find that six of them have clicked on the link. The usual
approach would be to say that the probability is 0.6 and
use it for any further calculations and processing based
on that value.

Now we can see that the actual probability could actu-
ally have been 0.5 and that it was just luck that we had seen

102   chapter 3

six clicks in that particular sample of ten. It is even possible
(though much less possible) that the actual probability is
0.1 and that a rare event occurred and we got six clicks. So
what we can really get from the data is not just one value
(0.6) but a list of possible values where for each we also have
an additional value of how well the data supports it; this is
what we mean by the posterior distribution. Once we have
such a posterior distribution, we do further calculations
using all (or a reasonable subset of) possible values and use
their average, each weighted by how likely that value is.

The Bayesian approach is especially useful when the
data set is small. If we see 60 clicks in 100 trials, the range
of probable values around 0.6 will be much smaller.

Though the Bayesian approach is flexible and inter-
esting, it has the disadvantage that except for simple
scenarios under restrictive assumptions, the necessary
calculation is too complex. One possibility is that of
approximation where instead of the real posterior distri-
bution that we cannot easily handle, we use one that is
similar but manageable. Another possibility is sampling
where instead of using the distribution itself, we generate
representative instances from the distribution and make
our inferences based on them. The popular methods for
these—namely, variational approximation for the former,
and Markov chain Monte Carlo (MCMC) sampling for the
latter—are among important current research directions
in machine learning.

	 Pattern Recognition    103

The Bayesian approach allows us to incorporate our
prior beliefs in training. One prior belief is that the under-
lying problem is smooth, which makes us prefer simpler
models; remember our discussion of Occam’s razor and
the Kanizsa triangle from chapter 2. In regularization, we
penalize complexity, and during training, in addition to
maximizing our fit to the data, we also try to minimize the
model complexity. While learning, we also get rid of those
parameters that make the model unnecessarily complex
and the output too variant. This implies a learning scheme
that involves not only the adjustment of parameters but
also changes to the model structure. Or we can go in the
other direction and add complexity incrementally when
we suspect we have a model that is too simple for the data.

The use of such nonparametric approaches in Bayesian
estimation is especially interesting because we are no lon-
ger constrained by some parametric model class, but the
model complexity also changes dynamically to match the
complexity of the task in the data (Orbanz and Teh 2010).
This implies a model of “infinite size,” because it can be as
complex as we want—it grows when it learns.

One model family that works quite well in many
domains is the artificial neural network that is inspired
from the human brain; in the next chapter, we will discuss
how such networks are organized in layers and how such

“deep” networks can be trained.

4

NEURAL NETWORKS AND
DEEP LEARNING

Artificial Neural Networks

Our brains make us intelligent; we see or hear, learn and
remember, plan and act thanks to our brains. In trying to
build machines to have such abilities then, our immediate
source of inspiration is the human brain, just as birds were
the source of inspiration in our early attempts to fly. What
we would like to do is to look at how the brain works and
try to come up with an understanding of how it does what
it does. But we want to have an explanation that is inde-
pendent of the particular implementation details—this is
what we called the computational theory when we discussed
levels of analysis in chapter 1. If we can extract such an
abstract, mathematical description, we can later imple-
ment it with what we have at our disposal as engineers—
for example, in silicon and running on electricity.

106   chapter 4

Early attempts to build flying machines failed until
we understood the theory of aerodynamics; only then we
could build airplanes. Today, we see birds and airplanes as
two different ways of flying—we call them airplanes now,
not artificial birds, and they can do more than birds can;
they cover longer distances and carry passengers or cargo.
The idea is to accomplish the same for intelligence, and we
start by getting inspired by the brain.

The human brain is composed of a very large num-
ber of processing units, called neurons, and each neuron
is connected to a large number of other neurons through
connections called synapses. Neurons operate in parallel
and transfer information among themselves over these
synapses. It is believed that the processing is done by the
neurons and memory is in the synapses, that is, in the way
the neurons are connected and influence each other.

Research on neural networks as models for analog
computation—neuron outputs are not discrete, 0 or 1, but
when they are activated they fire at a frequency which is
a continuous value—started as early as research on digi-
tal computation (McCulloch and Pitts 1943) but, after the
quick success and widespread use of digital computers,
went largely unnoticed for a long time.

In the 1960s, the perceptron model was proposed as
a model for pattern recognition (Rosenblatt 1962). It is a
network composed of artificial neurons and synaptic con-
nections, where each neuron has an activation value, and

	Ne ural Networks and Deep Learning     107

a connection from neuron A to neuron B has a weight that
defines the effect of A on B. If the synapse is excitatory,
when A is active it also tries to activate B; if the synapse is
inhibitory, when A is active it tries to suppress B.

During operation, each neuron sums up the activa-
tions from all the neurons that make a synapse with it,
weighted by their synaptic weights, and if the total acti-
vation is larger than a threshold value, the neuron “fires”
and its output corresponds to the value of this activation;
otherwise the neuron is silent. If the neuron fires, it sends
its activation value in turn down to all the neurons with
which it makes a synapse (see figure 7).

The perceptron basically calculates a weighted sum
before making a decision, and this can be seen as one way
of implementing a variant of the linear model we discussed
earlier. Such neurons can be organized as layers where all
the neurons in a layer take input from all the neurons in
the previous layer and calculate their value in parallel, and
these values together are fed to all the neurons in the layer
that follows—this is called a multilayer perceptron.

Some of the neurons are sensory neurons and take
their values from the environment, for example, from
the sensed image, similar to the receptors in the retina.
These then are given to other neurons that do some more
processing over them in successive layers as activation
propagates over the network. Finally, there are the output

108   chapter 4

Figure 7  An example of a neural network composed of neurons and
synaptic connections between them. Neuron Y takes its inputs from neurons
A, B, and C. The connection from A to Y has weight WYA that determines the
effect of A on Y. Y calculates its total activation by summing the effect of its
inputs weighted by their corresponding connection weights. If this is large
enough, Y fires and sends its value to the neurons after it—for example,
Z—through the connection with weight WZY.

Z

CB

WZY

WYA

WYB
WYC

A

Y

	Ne ural Networks and Deep Learning     109

neurons that make the final decision and carry out the
actions through actuators—for example, to move an arm,
utter a word, and so on.

Neural Network Learning Algorithms

In a neural network, learning algorithms adjust the con-
nection weights between neurons. An early algorithm was
proposed by Hebb (1949) and is known as the Hebbian
learning rule: the weight between two neurons gets rein-
forced if the two are active at the same time—the synaptic
weight effectively learns the correlation between the two
neurons.

Let us say we have one neuron that checks whether
there is a circle in the visual field and another neuron that
checks whether there is the digit six, ‘6’, in the visual field.
Whenever we see a six—or are told that it is a six when
we are learning to read—we also see a circle, so the con-
nection between them is reinforced, but the connection
between the circle neuron and, say, the neuron for digit
seven, ‘7’, is not reinforced because when we see one, we
do not have the other. So the next time we see a circle
in the visual field, this will increase the activation of the
neuron for the digit six but will diminish the activation of
the neuron for the digit seven, making six a more likely
hypothesis than seven.

110   chapter 4

In some applications, certain neurons in the network
are explicitly designated as input units and certain of
them as output units. We have a training set that contains
a sample of inputs and their corresponding correct output
values, as specified by a supervisor—for example, in esti-
mating the price of a used car, we have the car attributes
as the input and their prices as the output. In this case
of supervised learning, we clamp the input units to the
input values in the training set, let the activity propagate
through the network depending on the weights and the
network structure, and then we look at the values calcu-
lated at the output units.

We define an error function as the sum of the differ-
ences between the actual outputs the network estimates
for an input and their required values specified by the
supervisor in the training set; and in neural network train-
ing, for each training example, we update the connection
weights slightly, in such a way as to decrease the error for
that instance. Decreasing the error implies that the next
time we see the same or similar input, estimated outputs
will be slightly closer to their correct values. Theoretically
speaking, this is nothing but the good old regression we
discussed in chapter 2, except that here the model is imple-
mented as a neural network of neurons and connections.

This is one important characteristic of neural net-
work learning algorithms, namely that they can learn

	Ne ural Networks and Deep Learning     111

online, by doing small updates on the connection weights
as we see training instances one at a time. In batch learn-
ing, we have the whole data set and do training all at once
using the whole data. A popular approach today involves
mini batches, where we use small sets of instances in each
update.

Currently with data sets getting larger, online learning
is attractive because it does not require the collection and
the storage of the whole data; we can just learn by using
one example or a few examples at a time in a streaming
data scenario. Furthermore, if the underlying character-
istics of the data change slowly—as they generally do—
online learning can adapt seamlessly, without needing to
stop, collect new data, and retrain.

What a Perceptron Can and Cannot Do

Though the perceptron was successful in many tasks—
remember that the linear model works reasonably well in
many domains—there are certain tasks that cannot be
implemented by a perceptron (Minsky and Papert 1969).
The most famous of these is the exclusive OR (XOR)
problem:

In logic, there are two types of OR, the inclusive OR
and the exclusive OR. In everyday speech, when we say,

112   chapter 4

“To go to the airport, I will take the bus or the train,” what
we mean is the exclusive OR. There are two cases and only
one of them can be true at one time. To represent the
inclusive OR, we use the construct “and/or,” as in “This
fall, I will take Math 101 and/or Phys 101.” In other words,
I will take Math 101, Phys 101, or both.

Though the inclusive OR can be implemented by a per-
ceptron, the exclusive OR cannot. It is not difficult to see
why: if you have two cases, for example, the bus and the
train, and if you want either to be enough, you need to give
each of them a weight larger than the threshold so that the
neuron fires when any one of them is true. But then when
both of them are true, the overall activation will be twice
as high and cannot be less than the threshold.

Though it was known at that time that tasks like XOR
can be implemented using multiple layers of perceptrons,
it was not known how to train such networks; and the fact
that the perceptron cannot implement a task as straight-
forward as XOR—which can easily be implemented by a
few (digital) logic gates—led to disappointment and the
abandonment of neural network research for a long time,
except for a few places around the world. It was only in the
mid-1980s when the backpropagation algorithm was pro-
posed to train multilayer perceptrons—the idea had been
around since the 1960s and 1970s but had gone largely
unnoticed—that interest in it was revived (Rumelhart,
Hinton, and Williams 1986).

	Ne ural Networks and Deep Learning     113

Recurrent Networks for Learning Time

Not all artificial neural networks are feedforward; there
are also recurrent networks where in addition to connec-
tions between layers, neurons also have connections to
neurons in the same layer (including themselves), or even
to neurons back to the layers that precede them. Each
activation calculation causes a certain delay so the recur-
rent connections act as a short-term memory for contextual
information and let the network remember the past.

Let us say that input neuron A is connected to neuron
X and that there is also a recurrent connection from X to
itself (see figure 8). The effect of this connection is that at
time t, the value of X will depend on input A at time t and
will also depend on the value of X at time t – 1 because of
the recurrent connection from X to itself. In the next time
step, X at time t + 1 will depend on input A at time t + 1
and also on X at time t (previously calculated using A at
time t and X at time t – 1), and so on. In this way, the value
of X at any time will have depended on all the inputs seen
until then.

If we define the state of a network as the collection of
the values of all the neurons at a certain time, recurrent
connections allow the current state to depend not only
on the current input but also on the network state in the
previous time steps calculated from the previous inputs.
So, for example, if we are seeing a sentence one word at

114   chapter 4

CB

WXA

WXX

A

X

Figure 8  The recurrent connection acts as a short-term memory.
The value of X depends not only on its immediate inputs A, B, and C, but
also on its value in the previous time step and the weight WXX of the
recurrent connection.

a time, the recurrence allows the previous words in the
sentence to be kept in this short-term memory in a con-
densed and abstract form and hence taken into account
while processing the current word. The architecture of the
network and the way recurrent connections are set define
how far back and in what way the past influences the cur-
rent output.

Recurrent neural networks are used in many tasks
where the time dimension is important, as in speech or
language processing, where what we would like to rec-
ognize are sequences. In a translation of text from one

	Ne ural Networks and Deep Learning     115

language to another, not only the seen input but also the
generated output is a sequence.

More complex types of recurrent connections are
also possible. In a long short-term memory (LSTM) unit
(Hochreiter and Schmidhuber 1997), there is a “forget
gate” where this type of effect can be turned on or off
(see figure 9). So depending on where and how the gate is
turned on and off, the network can be selective as to what
to remember from the past.

CBA

X
g

Figure 9  The “forget gate” g is another unit that sees the input A, B, and
C and its output decides whether the activation passes or not through its
associated recurrent connection. If g is 1, the gate is closed and the past is
taken into account; if g is 0, the recurrent connection is cut and the past value
of X does not have any effect on the next value, that is, the unit has effectively
forgotten the past.

116   chapter 4

For example, compare the following two sentences:

“The man entered the room, looked around, and took
off his jacket.”

“The woman entered the room, looked around, and
took off her jacket.”

Whether the possessive pronoun is “his” or “her”
depends on the gender of the subject, that is, whether
the person entering the room is a man or woman. So in
generating such a sentence one word at a time (e.g., when
generating a translation), the network should store that
gender information when it processes the subject word
at the beginning of the sentence and keep it intact (unaf-
fected by the following words that are irrelevant for this
purpose) until it generates the correct pronoun.

Connectionist Models in Cognitive Science

Artificial neural network models are known as connectionist
or parallel distributed processing (PDP) models in cognitive
psychology and cognitive science (Feldman and Ballard
1982; Rumelhart and McClelland and the PDP Research
Group 1986). The idea is that neurons correspond to con-
cepts and that the activation of a neuron corresponds to

	Ne ural Networks and Deep Learning     117

our current belief in the truth of that concept. Connec-
tions correspond to constraints or dependencies between
concepts: A connection has a positive weight and is excit-
atory if the two concepts occur simultaneously—for
example, between the neurons for circle and ‘6’—and has
a negative weight and is inhibitory if the two concepts are
mutually exclusive—for example, between the neurons
for circle and ‘7’.

Neurons whose values are observed—for example, by
sensing the environment—affect the neurons they are
connected to, which in turn affect the neurons they are con-
nected to, and so on. This activity propagation throughout
the network results in a state of neuron outputs that satis-
fies the constraints defined by the connections.

The basic idea in connectionist models is that intel-
ligence is an emergent property and high-level tasks, such
as recognition or association between patterns, arise
automatically as a result of this activity propagation by
the rather elemental operations of interconnected simple
processing units. Similarly, learning is done at the connec-
tion level through simple operations, for instance, accord-
ing to the Hebbian rule, without any need for a higher-level
programmer.

Connectionist networks care about biological plausi-
bility but are still abstract models of the brain; for example,
it is very unlikely that there is actually a neuron for every
concept in the brain—this is the grandmother cell theory,

Intelligence is an
emergent property and
tasks such as recognition
arise automatically
as a result of the propa
gation of activity over
a network of simple
processing units.

	Ne ural Networks and Deep Learning     119

which states that I have a neuron in my brain that is acti-
vated only when I see or think of my grandmother—that
is a local representation. It is known that neurons die and
new neurons are born in the brain, so it makes more sense
to believe that the concepts have a distributed representa-
tion on a cluster of neurons, with enough redundancy for
concepts to survive despite physical changes in the under-
lying neuronal structure.

Neural Networks as a Paradigm for Parallel Processing

Since the 1980s, computer systems with thousands of pro-
cessors have been commercially available. The software for
such parallel architectures, however, has not advanced as
quickly as hardware. The reason for this is that almost all
our theory of computation up to that point was based on
serial, single-processor machines. We are not able to use
the parallel machines in their full capacity because we can-
not program them efficiently.

There are mainly two paradigms for parallel processing.
In single instruction, multiple data (SIMD) machines, all
processors execute the same instruction but on different
pieces of data. In multiple instruction, multiple data (MIMD)
machines, different processors may execute different
instructions on different data. SIMD machines are easier
to program because there is only one program to write.

120   chapter 4

However, problems rarely have such a regular structure
that they can be parallelized over a SIMD machine. MIMD
machines are more general, but it is not an easy task to
write separate programs for all the individual processors;
additional problems arise that are related to synchroniza-
tion, data transfer between processors, and so forth. SIMD
machines are also easier to build, and machines with more
processors can be constructed if they are SIMD. In MIMD
machines, processors are more complex, and a more com-
plex communication network must be constructed for the
processors to exchange data arbitrarily.

Assume now that we can have machines where pro-
cessors are a little bit more complex than SIMD proces-
sors but not as complex as MIMD processors. Assume that
we have simple processors with a small amount of local
memory where some parameters can be stored. Each pro-
cessor implements a fixed function and executes the same
instructions as SIMD processors; but by loading different
values into its local memory, each processor can be doing
different things and the whole operation can be distributed
over such processors. We will then have what we can call
neural instruction, multiple data (NIMD) machines, where
each processor corresponds to a neuron, local parameters
correspond to its synaptic weights, and the whole struc-
ture is a neural network. If the function implemented in
each processor is simple and if the local memory is small,
then many such processors can be fit on a single chip.

	Ne ural Networks and Deep Learning     121

The problem now is to distribute a task over a network
of such processors and to determine the local parameter
values. This is where learning comes into play: We do not
need to program such machines and determine the param-
eter values ourselves if such machines can learn from
examples.

Thus, artificial neural networks are a way to make use
of the parallel hardware we can build with current tech-
nology and—thanks to learning—they need not be pro-
grammed. Therefore, we also save ourselves the effort of
programming them.

Hierarchical Representations in Multiple Layers

Before, we mentioned that a single layer of perceptron can-
not implement certain tasks, such as XOR, and that such
limitations do not apply when there are multiple layers.
Actually, it has been proven that the multilayer perceptron
is a universal approximator, that is, it can approximate any
function with desired accuracy given enough neurons—
through training it to accomplish that is not always
straightforward.

The perceptron algorithm can train only single-layer
networks, but in the 1980s the backpropagation algo-
rithm was invented to train multilayer perceptrons, and
this caused a flurry of applications in various domains

Artificial neural
networks are a way to
make use of the parallel
hardware we can build
with current technology
and—thanks to
learning—they need not
be programmed.

	Ne ural Networks and Deep Learning     123

significantly accelerating neural network research in
many fields, from cognitive science to computer science
and engineering.

The multilayer network is intuitive because it cor-
responds to layers of operation where we start from the
raw input and incrementally perform a more complicated
transformation, until we get to the output.

For example, in image recognition, we have image pix-
els as the basic input and as input to the first layer. The
neurons in the next layer combine these to detect basic
image descriptors such as strokes and edges of different
orientations. A later layer combines these to form longer
lines, arcs, and corners. Layers that follow combine them
to learn more complex shapes such as circles, squares, and
so on. These in turn are combined with some more layers
of processing to represent the objects we want to learn,
such as faces or handwritten characters.

Each neuron in a layer defines a more complex feature
in terms of the simpler patterns detected in the layer below
it. These intermediate feature-detecting units are called
hidden units because they correspond to hidden attributes
not directly observed but are defined in terms of what is
observed. These successive layers of hidden units corre-
spond to increasing layers of abstraction, where we start
from raw data such as pixels and end up in abstract con-
cepts such as a digit or a face.

124   chapter 4

It is interesting to note that a similar mechanism
seems to be operating in the visual cortex. In their experi-
ments on cats, Hubel and Wiesel, who were later awarded
the 1981 Nobel Prize for their work on visual neurophysi-
ology, have shown that there are simple cells that respond
to lines of particular orientations in particular positions
in the visual field, and these in turn feed to complex and
hypercomplex cells for detecting more complicated shapes
(Hubel 1995)—though not much is known about what
happens in later layers.

Imposing such a structure on the network implies
making assumptions, such as dependencies, about the
input. For example, in vision we know that nearby pixels
are correlated and there are local features like edges and
corners. Any object, such as a handwritten digit, may be
defined as a combination of such primitives. We know
that because the visual scene changes smoothly, nearby
pixels tend to belong to the same object, and where there
is sudden change—an edge—is informative because it
is rare.

Similarly, in speech, locality is in time, and inputs
close in time can be grouped as speech primitives. By com-
bining these primitives, longer utterances, namely speech
phonemes, can be defined. They in turn can be combined
to define words, and these in turn can be combined as
sentences.

	Ne ural Networks and Deep Learning     125

In such cases, when designing the connections
between layers, units are not connected to all of the input
units because not all inputs are dependent. Instead, we
define units that define a window over the input space and
are connected to only a small local subset of the inputs.
This decreases the number of connections and therefore
the number of parameters to be learned. Such a structure
is called a convolutional neural network where the opera-
tion of each unit is considered to be a convolution—that
is, a matching—of its input with its weight (Le Cun et al.
1989). An earlier similar architecture is the neocognitron
(Fukushima 1980).

The idea is to repeat this in successive layers where
each layer is connected to a small number of local units
below. Each layer of feature extractors checks for slightly
more complicated features by combining the features
below in a slightly larger part of the input space, until we
get to the output layer that looks at the whole input. Fea-
ture extraction also implements dimensionality reduction
because although the raw attributes that we observe may
be many in number, the important hidden features that
we extract from data and that we use to calculate the out-
put are generally much fewer.

This multilayered network is an example of a hierarchi-
cal cone where features get more complex, abstract, and
fewer in number as we go up the network until we get to
classes (see figure 10).

126   chapter 4

“livre” “read”

“book” “bell”

“I”“o”

Figure 10  A very simplified example of hierarchical processing. At the
lowest level are pixels, and they are combined to define primitives such
as arcs and line segments. The next layer combines them to define letters,
and the next combines them to define words. The representation becomes
more abstract as we go up. Continuous lines denote positive (excitatory)
connections, and dashed lines denote negative (inhibitory) connections.
The letter o exists in “book” but not in “bell.” At higher levels, activity may
propagate using more abstract relationships such as the relationship
between “book” and “read,” and in a multilingual context, between “book”
and “livre,” the French word for book.

	Ne ural Networks and Deep Learning     127

Deep Learning

In computer vision in the last half century, significant
research has been done to find the best features for accu-
rate classification, and many different image filters, trans-
forms, and convolutions have been proposed to implement
such feature extractors manually.

Though these approaches have had some success,
learning algorithms are achieving higher accuracy recently
with big data and powerful computers. With few assump-
tions and little manual interference, structures similar
to the hierarchical cone are being automatically learned
from large amounts of data. These learning approaches are
especially interesting in that, because they learn, they are
not fixed for any specific task, and they can be used in a
variety of applications. They learn both the hidden feature
extractors and also how they are best combined to define
the output.

This is the idea behind deep neural networks where,
starting from the raw input, each hidden layer combines
the values in its preceding layer and learns more compli-
cated functions of the input. The fact that the hidden unit
values are not 0 or 1 but continuous allows a finer and
graded representation of similar inputs (For example, if
what we see in a small patch looks like a corner but is not
exactly, the output of the corner-detecting hidden unit in
that region will be, say, 0.7). Successive layers correspond

128   chapter 4

to more abstract representations until we get to the final
layer where the outputs are learned in terms of these most
abstract concepts.

We saw an example of this in the convolutional neural
network where starting from pixels, we get to edges, and
then to corners, and so on, until we get to a digit. In such a
network, some user knowledge is necessary to define the
connectivity and the overall architecture. Consider a face
recognizer network where inputs are the image pixels. If
each hidden unit is connected to all the pixels, the net-
work has no knowledge that the inputs are face images or
even that the input is two-dimensional—the input is just
a set of values. Using a convolutional network where hid-
den units are fed with localized two-dimensional patches
is a way to feed this locality information such that correct
abstractions can be learned.

In deep learning, the idea is to learn feature levels of
increasing abstraction with minimum human contribu-
tion (Goodfellow et al. 2016; LeCun, Bengio, and Hinton
2015; Schmidhuber 2015). This is because in most appli-
cations, we do not know what structure there is in the
input, especially as we go up and the corresponding con-
cepts become “hidden.” So, any sort of dependency should
be automatically discovered during training from a large
sample of examples. It is this extraction of hidden depen-
dencies, or patterns, or regularities from data that allows
abstraction and learning general descriptions.

	Ne ural Networks and Deep Learning     129

In chapter 2 when we discussed the example of fit-
ting a model to a sequence of numbers, we saw that as the
sequence gets more complex, we need more flexible mod-
els to be able to make a fit. Learning basically is a process
of matching the complexity of the learner model to that of
the task underlying the data. The representational capabil-
ity of a neural network depends on its number of layers
and units in each layer, so, as the task that we want to
learn gets complex, we need deeper networks with more
layers and units.

Training a network with multiple hidden layers is dif-
ficult and slow because the error at the output needs to be
propagated back to update the weights in all the preced-
ing layers, and there is interference when there are many
parameters. In a convolutional network, each unit is fed to
only a small subset of the units before and feeds to only a
small subset of units after, so there is less interference and
training can be done faster.

Deep learning methods are attractive mainly because
they need less manual help. We do not need to craft the
right features or the suitable transformations. Once we
have data—and today we have “big” data—and sufficient
computation available—and today we have data centers
with thousands of processors—we just wait and let the
learning algorithm discover all that is necessary by itself.

Another important factor that fueled deep learning
research in recent years is the availability of software

130   chapter 4

libraries that allow coding deep neural networks very
easily. Those libraries can also efficiently utilize parallel
hardware and thus permit testing different network archi-
tectures very quickly.

The idea of multiple layers of increasing abstraction
that underlies deep learning is intuitive. Not only in
vision—in handwritten digits or face images—but also in
many applications we can think of such layers of abstrac-
tion. Discovering these abstract representations is useful,
not only for prediction but also because abstraction allows
a better description and understanding of the problem.

Learning Hidden Representations

A special type of multilayer network is the autoencoder,
where the desired output is set to be equal to the input,
and the network has a hourglass shape with fewer hidden
units in the intermediate layers than there are in the input
and output. Such a network is composed of two parts
where the first part, from the input to the hidden layer,
implements an encoder stage where a high-dimensional
input is compressed to be represented by the values of the
fewer hidden units. The second part, from the hidden layer
to the output, implements a decoder stage that takes that
low-dimensional representation in the hidden layer and

	Ne ural Networks and Deep Learning     131

reconstructs the higher dimensional input back again at
the output (see figure 11).

For the network to be able to reconstruct the input
at its output units, those few hidden units that act as a
bottleneck should be able to extract the features that pre-
serve information maximally. The autoencoder is unsuper-
vised; those hidden units learn themselves without any
supervision to find a good encoding of the input, a short,
compressed description, extracting the most important
features and ignoring what is irrelevant, namely, noise.

Output

Input

Code

Decoder

Encoder

...

...

Figure 11  The autoencoder is a neural network where there are fewer
hidden units than input units, and the output is set to be equal to the input.
The encoder needs to learn to generate a short, compressed “code” in its
hidden layer that should be sufficient for the decoder to be able to reconstruct
the input back at the output.

132   chapter 4

Researchers have proposed extensions and different
uses of the basic autoencoder. For example, the autoen-
coder shown in figure 11 has only one layer of connections
between the input and the hidden units, but in practice
in a deep autoencoder, there may be multiple layers in the
encoder (with their structure mirrored in the decoder) to
be able to learn more abstract hidden representations; for
example, if we have images as the input, the first few lay-
ers of the encoder are typically convolutional.

An interesting variant is the noisy autoencoder where
the aim is to learn a hidden representation that is robust
to perturbations of the input. Let us say we have face
images and we see that some people wear glasses that
occlude their eyes, which can mess up recognition. What
we do is we use an autoencoder where we take two images
of the same person as input, one with and one without
glasses, and for both, we set the image without glasses
as the desired output. To be able to generate the same
output for both, the encoder should learn to generate
the same code for both, meaning that it should learn to
discard the occluding effect of the glasses. Such a repre-
sentation generated by the encoder can then be given
to a face recognizer which can make decisions despite
glasses.

This can be done with any perturbation of the input
that we want to get invariance to, for example, small rota-
tions or translations. That is, if you have an input x and its

	Ne ural Networks and Deep Learning     133

perturbed version x* and for both, we set x as the desired
output, the network, assuming that it is big enough and
that it sees enough training examples, learns to generate
a hidden representation that is invariant to that type of
perturbation.

The general idea is that if we have two different inputs
for which we set the same desired output, the encoder
will be forced to learn to generate the same, or very simi-
lar codes for the two. One application of this is in learn-
ing word representations in natural language processing.
This is a topic where the need for good feature extractors,
that is, good hidden representations, is most apparent.
Researchers have worked on predefined databases, called
ontologies, for representing relationships between words
in a language and such databases work with some success;
but again it turned out that the best way is to learn such
relationships from a lot of data.

In the word2vec network which has the same architec-
ture as an autoencoder, the output is a word and the input
is a word in its context, that is, one of the words that are
nearby in the same sentence (Mikolov et al. 2013). The
result of such a training is that if two words appear in the
same or very similar contexts, the encoder will generate
similar codes for them.

For example, consider the following sentence:

“Visitors to Paris will enjoy its numerous museums.”

134   chapter 4

It is highly possible that if we go through a very large
corpus of sentences, we will also find very similar sen-
tences but with “Berlin” instead of “Paris,” or “Rome,” and
so on. We will have many sentences about cities, which are
all almost the same, the only difference being the name
of the city. This will make codes (encoder outputs) for all
these cities to be similar because the same context words
need to be decoded from them.

Now consider this sentence:

“The French foreign minister has returned to Paris.”

Again, we will have many similar sentences with “Ger-
man” instead of “French” and this time “Berlin” instead
of “Paris.” This will cause similar codes to be generated for

“French” and “German,” but also the representational rela-
tionship between “German” and “Berlin” will be the same
as the one between “French” and “Paris.” This leads to what
is called vector algebra: Because codes are numbers, we can
do arithmetic on them.

Let us say vec(“Paris”) denotes the learned code for
“Paris” (see figure 12). After training, we expect vec(“Paris”)
and vec(“Berlin”) to be nearby, and also vec(“French”) and
vec(“German”) to be nearby but in some other part of
the code space, but we expect also the relationships to be
similar. That is, we expect vec(“German”) – vec(“Berlin”)
to be very similar to vec(“French”) – vec(“Paris”), so much

	Ne ural Networks and Deep Learning     135

so that if we calculate vec(“German”) – vec(“Berlin”) +
vec(“Paris”), we will get a code very close to vec(“French”).

End-to-End Learning

In many applications, the processing can be viewed as an
encoder-decoder structure that we have with the autoen-
coder discussed earlier.

Consider machine translation. Starting with an
English sentence, in multiple levels of processing and

“German”

“Berlin”

“French”

“Paris”

Figure 12  In the code space learned by word2vec, cities form one cluster
and the adjectives denoting the country of origin form another cluster in
some other part of the space. The relative positions are also expected to
be very similar so that we can do vector algebra: We expect vec(“German”)
–vec(“Berlin”) + vec(“Paris”) to be close to vec(“French”).

136   chapter 4

abstraction that are learned automatically from a very
large English corpus to code the lexical, syntactic, and
semantic rules of the English language, we would get
to the most abstract representation. Now consider the
same sentence in French. The levels of processing learned
this time from a French corpus would be different, but if
the two sentences mean the same, at the most abstract,
language-independent level, they should have very similar
representations.

Language understanding is a process of encoding
where from a given sentence, we extract this high-level
abstract representation, and language generation is a pro-
cess of decoding, where we synthesize a natural language
sentence from such a high-level representation. In trans-
lation, we encode in the source language and decode in
the target language. In a dialogue system, we first encode
the question to an abstract level and process it to form a
response in the abstract level, which we then decode as the
response sentence.

The advantage of such a structure is that learning is
end to end. We only specify the input to the encoder and
the desired output at the very end of the decoder; it is
enough to just provide a very large data set of input and
output pairs, and any transformation needed in between
is automatically learned by the many hidden layers of a
deep network. Learning not only adjusts the parameters
of the encoder and the decoder but also specifies the

	Ne ural Networks and Deep Learning     137

intermediate code between the two modules; this inter-
mediate code is the representation of the input best suited
to generate the corresponding output.

There are many interesting applications of deep neu-
ral networks trained end to end, and they typically have
this structure. There is the early module that analyzes the
input and transforms it into an intermediate representa-
tion and the later module learns to synthesize the correct
output from that intermediate representation.

One example is the show-and-tell deep architecture
that learns to generate captions for images (Vinyals et al.
2014). The encoder is a convolutional network that takes
an image and analyzes it in its many levels to generate
a code that summarizes the content of the image. The
decoder is a recurrent network that generates the caption
one word at a time from this code. The whole structure is
trained end to end, from a large set of example pairs of
images and manually provided captions.

Another example is the deep neural network that
learns to play Atari games (Mnih et al. 2015). The input
is the game screen and the output is the correct joystick
action. The network has early convolutional layers that
analyzes the image to extract the best features for decid-
ing on the right action and the later, fully connected layers
generate the action based on those.

It is also possible to use a network trained on one task
to help solve another task, this is called transfer learning.

138   chapter 4

Let us say we want to do face recognition, but our data
set is relatively small. Let us assume that we already have
a very deep convolutional network trained on some very
large image data set. What we do is we take the first few
layers of that larger network and copy them to act as early
layers in our face recognition network. If we expect the
basic features necessary for the large problem to be also
useful for face recognition, it makes sense to do this. We
only train the later layers of the face recognition network,
which means that there will be fewer parameters, and we
can train those using a smaller data set.

Generative Adversarial Networks

The generative adversarial network (GAN) is actually com-
posed of two networks, a generator G and a discriminator
D (Goodfellow et al. 2014). The aim is to learn a genera-
tor; D is only there to train G. Both G and D are typically
deep neural networks, but GAN is a general strategy for
training that is independent of how the two learners are
implemented.

The task of a generator is different from that of a
regressor or a classifier. Let us say we have a training set
of faces. What we would like to do is to learn the struc-
ture of faces from this data so well that we can generate a
new face when we want. The output will be an image that

	Ne ural Networks and Deep Learning     139

looks like a face, it will have hair on top, eyes and nose
suitably placed with respect to each other, the face should
be symmetric, and so on, and all those constraints are to
be learned from the data. Again, we want generalization,
we do not want to generate a face already in the training
set but we want the new image to be the face of a person
outside of the training set; it will be the face of a person
who does not even exist. Or let us say we have a training
set of Bach chorales and we want to train a generator from
those so that it can spit out a new chorale when we want.

In GAN, the generator takes a random input and
transforms it into an instance, for example, a face image
or a chorale (see figure 13). Different random inputs gen-
erate different instances. The input z has some predefined
distribution and G maps each z to a candidate x. What
G does is that it takes the distribution of z as input and
stretches, translates, rotates, etc. it in its many successive
layers such that its output looks as much as possible to the
distribution of x.

Those instances that are generated by G are labelled as
“fake.” We also have a training set of actual faces/chorales
and they are labelled as “true.” D is a two-class classifier
that is trained to separate fakes from true instances. G is
like a forger that paints fake Rembrandts and D is like an
art expert who is good at spotting fake Rembrandts.

G is trained to generate fakes that will be classified as
true by D. The two are trained together; as D gets better, G

140   chapter 4

will use that information to understand what D classifies
as true and will learn to generate fakes similar to those. D
will in turn learn to tell these apart which in turn will force
G to generate even better fakes, and so on.

GANs are one of the most popular research topics
in machine learning these days, with very impressive
results.1 One major problem with GAN is that because
there are two networks, training is more difficult; another
problem is that the goodness of a generator is still largely
evaluated manually, so GAN currently is mostly used in

0 (fake)

0/1

1 (true)

G

D

z

x

Figure 13  In the generative adversarial network, G is the generator that
transforms a random z to a candidate x, but because it is generated it is called
a “fake” instance. We also have the “true” x that are valid instances drawn
from a training set. D is trained to separate fakes from true instances as well
as possible; G is trained to generate fakes so well that D will classify them
as true.

	Ne ural Networks and Deep Learning     141

image generation tasks where such evaluation is done
manually.

Until now, we have talked about supervised learning
where there is an input and an output, and the aim is to
learn the mapping from the input to the output. In the
next chapter, we will discuss unsupervised learning where
there is no explicit output, and the aim is to learn the regu-
larity in the input space, to learn what type of things hap-
pen frequently.

5

LEARNING CLUSTERS AND
RECOMMENDATIONS

Finding Groups in Data

Previously we covered supervised learning where there is
an input and an output—for example, car attributes and
price—and the aim is to learn a mapping from the input to
the output. A supervisor provides the correct values, and
the parameters of a model are updated so that its output
gets as close as possible to these desired outputs.

We are now going to discuss unsupervised learning,
where there is no predefined output, and hence no such
supervisor; we have only the input data. The aim in unsu-
pervised learning is to find the regularities in the input,
to see what normally happens. There is a structure to the
input space such that certain patterns occur more often
than others, and we want to see what generally happens
and what does not.

144   chapter 5

One method for unsupervised learning is clustering,
where the aim is to find clusters or groupings of input; in
statistics, these are called mixture models.

In the case of a company, the customer data contains
demographic information, such as age, gender, zip code,
and so on, as well as past transactions with the company.
The company may want to see the distribution of the pro-
file of its customers, to see what type of customers fre-
quently occur. In such a case, a clustering model allocates
customers similar in their attributes to the same group,
providing the company with natural groupings of its cus-
tomers; this is called customer segmentation (see figure
14). Once such groups are found, the company may decide
strategies, for example, services and products, specific to
different groups; this is known as customer relationship
management (CRM).

Such a grouping also allows the company to identify
those who are outliers, namely, those who are different
from other customers, which may imply a niche in the
market that can be further exploited by the company, or
those customers who require further investigation, for
example, churning customers.

We expect to see regularities and patterns repeated
with minor variations in many different domains. Detect-
ing them as primitives and ignoring the irrelevant varia-
tions is also a way of doing compression. For example,
in an image, the input is made up of pixels, but we can

	 Learning Clusters and Recommendations    145

identify regularities by analyzing repeated image pat-
terns, such as, texture, objects, and so forth. This allows
a higher-level, simpler, and more useful description of the
scene and achieves better compression than compressing
at the pixel level. A scanned document page does not have
random on/off pixels but bitmap images of characters;
there is structure in the data, and we make use of this

S
av

in
g

s

Income

Figure 14  Clustering for customer segmentation. For each customer, shown
by a circle, we have the income and savings information. Here, we see that
there are three customer segments. Such a grouping allows us to understand
the characteristics of the different segments—for example, the segment
on the lower left is that of customers with low income and low savings—so
that we can define different interactions with each segment; this is called
customer relationship management.

146   chapter 5

redundancy by finding a shorter description of the data in
terms of strokes of different orientations. Going further,
if we can discover that those strokes combine in certain
ways to make up characters, we can use just the code of a
character, which is shorter than its image.

In document clustering, the aim is to group similar doc-
uments. For example, news reports can be subdivided into
those related to politics, sports, fashion, arts, and so on.
We can represent the document as a bag of words using a
lexicon that reflects such document types, and then docu-
ments are grouped depending on the number of shared
words. It is of course critical how the lexicon is chosen.

Unsupervised learning methods are also used in bio-
informatics. DNA in our genome is the “blueprint of life”
and is a sequence of bases, namely, A, G, C, and T. RNA is
transcribed from DNA, and proteins are translated from
RNA. Proteins are what the living body is and does. Just
as DNA is a sequence of bases, a protein is a sequence of
amino acids (as defined by bases). One application area of
computer science in molecular biology is alignment, which
is matching one sequence to another. This is a difficult
string-matching problem because strings may be quite
long, there are many template strings to match against,
and there may be deletions, insertions, or substitutions.

Clustering is used in learning motifs, which are
sequences of amino acids that occur repeatedly in pro-
teins. Motifs are of interest because they may correspond

	 Learning Clusters and Recommendations    147

to structural or functional elements within the sequences
they characterize. The analogy is that if the amino acids
are letters and proteins are sentences, motifs are like
words, namely, a string of letters with a particular mean-
ing occurring frequently in different sentences.

Clustering may be used as an exploratory data analysis
technique where we identify groups naturally occurring
in the data. We can then, for example, label those groups
as classes and later on try to classify them. A company
may cluster its customers and find segments, and then
toward a certain aim—for example, churning—can label
them and train a classifier to predict the behavior of new
customers. But the important point is that there may
be a cluster or clusters that no expert could have fore-
seen, and that is the power of unsupervised data-driven
analysis.

Sometimes a class is made up of multiple groups. Con-
sider the case of optical character recognition. There are
two ways of writing the digit seven; the American version
is ‘7’, whereas the European version has a horizontal bar
in the middle (to tell it apart from the European ‘1’, which
keeps the small stroke on top in handwriting). In such a
case, when the sample contains examples from both con-
tinents, the class for seven should be represented as the
union/disjunction/mixture of two groups.

A similar example occurs in speech recognition where
the same word can be uttered in different ways, due to

148   chapter 5

differences in pronunciation, accent, gender, age, and
so on—“I say to-may-to, you say to-mah-to.” Thus when
there is not a single, universal way, all these different ways
should be represented as equally valid alternatives to be
statistically correct.

Clustering algorithms group instances in terms of
their similarities calculated using their input representa-
tion, which is a list of input attributes, and the similarity
between instances is measured by combining similarities
in these attributes. In certain applications, we can define a
similarity measure between instances directly, in terms of
the original data structure, without explicitly generating
such a list of attributes and calculating similarities over
them.

Consider clustering Web pages. In addition to the text
field, we can also use the similarity of meta (or header)
information such as titles or keywords, or the number of
common Web pages that link to or are linked from those
two. This gives us a much better similarity measure than
what is calculated using the bag of words representation
on the text of the Web pages. Using a similarity measure
that is better suited to the application—if one can be
defined—leads to better clustering results; this is the basic
idea in spectral clustering.

Such application-specific similarity representations
are also popular in supervised learning applications typi-
cally grouped under the name kernel function. The support

	 Learning Clusters and Recommendations    149

vector machine (Vapnik 1998) is one such learning algo-
rithm used for both classification and regression.

It is also possible to do hierarchical clustering, where
instead of a flat list of clusters, we generate a tree structure
with clusters at different levels of granularity and clusters
higher in the tree are subdivided into smaller clusters
(see figure 15). We are familiar with such trees of clusters
from studies in biology—most famously, the taxonomy by

a b c d e

a b

c d e

Figure 15  Example of hierarchical clustering. On the left, we have five
instances, a to e, represented in two dimensions; these may for example be
five customers and the two axes may be two attributes, such as income and
savings. Closest instances are merged iteratively to define larger clusters and
the structure can be visualized as a tree, as shown in the right. The advantage
of such an approach is that we get different clustering solutions at different
levels of granularity: At one extreme (where we have high tolerance to
distance between instances), we have one cluster containing all five instances;
at the other extreme (where we have very low tolerance), we have five clusters
each containing one instance. One intermediate solution has three clusters,
{a, b}, {c}, and {d, e}; this is what we get if our tolerance is less than the
distance between c and d.

150   chapter 5

Linnaeus—or human languages. One explanation of the
splitting up of clusters into smaller clusters is due to phy-
logeny, that is, to evolutionary changes—small mutations
are gradually accumulated over time until a species (or a
language) splits into two—but in other applications, the
reason of similarity may be different.

The aim in clustering in particular, or unsupervised
learning in general, is to find structure in the data. In the
case of supervised learning (e.g., in classification), this
structure is imposed by the supervisor who defines the
different classes and labels the instances in the training
data by these classes. This additional information pro-
vided by the supervisor is of course useful, but we should
always make sure that it does not become a source of bias
or impose artificial boundaries. There is also the risk that
there is error in labeling, which is called “teacher noise.”

Unsupervised learning is an important research
area because unlabeled data is a lot easier and cheaper
to find. For speech recognition, a talk radio station is a
source of unlabeled speech data; spoken speech is not a
random sequence of sounds, but we have particular sound
sequences repeated frequently, which are the words in that
language. The idea is to extract the basic characteristics
from unlabeled data and learn what is typical, which can
then later be labeled for different purposes. A baby spends
their first few years looking around when they see things,
objects, faces repeatedly under a variety of conditions,

The aim in clustering
in particular, or
unsupervised learning
in general, is to find
structure in the data,
by extracting the basic
characteristics and
learning what is typical.

152   chapter 5

during which presumably they learn their basic feature
extractors and how they typically combine to form objects.
Later on, when that baby learns language, they learn the
names for those.

Recommendation Systems

In chapter 1, we discussed recommendation systems for pre-
dicting customer behavior as an application of machine
learning. Given a large data set of customer transactions,
we can find association rules of the form, “People who buy X
are also likely to buy Y.” Such a rule implies that among the
customers who buy X, a large percentage have also bought
Y. So, if we find a customer who has bought X but has not
bought Y, we can target them as a potential Y customer. X
and Y can be products, authors, cities to be visited, videos to
be watched, and so on; we see many examples of this type of
recommendation every day, especially while surfing online.

Though this targeting approach is used frequently,
and efficient algorithms have been proposed to learn such
rules from very large data sets, interesting algorithms that
make use of generative models are being proposed these
days.

Remember that while constructing a generative model,
we think about how we believe the data is generated. In
customer behavior therefore, we consider the causes that

	 Learning Clusters and Recommendations    153

affect this behavior. We know that people do not buy
things at random. Their purchases depend on a number
of factors, such as their household composition—that is,
how many people they live with, their gender, ages—and
their income, their taste (which in turn is a result of other
factors such as the place of origin), and so on. Though
some companies have loyalty cards and collect some of
this information, in practice, most of these factors are
not known, are hidden, and need to be inferred from the
observed data.

Note, however, that even if we have some idea about
what such factors, an overreliance on them can be mis-
guided because they are often wrong or incomplete; there
may also be factors that we cannot immediately think of
or factors that are not as important as we think, which is
why it is always best to learn (discover) them from data.

Extracting such hidden causes will build a much bet-
ter model than trying to learn associations among prod-
ucts. For example, a hidden factor may be “baby at home,”
which will lead to the purchase of different items such as
diapers, milk, baby formula, wipes, and so on. So instead
of learning association rules between pairs or triples of
these items, if we can estimate the hidden baby factor
based on past purchases, this will trigger an estimation of
whatever it is that has not been bought yet.

In practice, there are many such factors; each cus-
tomer is affected (or defined) by a number of these, and

154   chapter 5

each factor triggers a subset of the products. The factor
values are not 0 or 1 but continuously valued, and this dis-
tributed representation provides a richness when it comes
to representing customer instances.

This approach aims to find structure by decomposing
data into two parts. The first one, the mapping between
customers and factors, defines a customer in terms of
the factors (with different weights). The second one, the
mapping between factors and products, defines a factor in
terms of the products (with different weights). In math-
ematics, we model data using matrices, which is why this
approach is called matrix decomposition, or sometimes ten-
sor decomposition, tensors being matrices with more than
two dimensions.

Such a generative approach with hidden factors makes
sense in many other applications. Let us take the case of
movie recommendations (see figure 16). We have custom-
ers who have rented a number of movies and we have a
score for each movie they watched, and from those we
want to make a recommendation.

The first characteristic of this problem is that we have
many customers and many movies, but the data is sparse.
Every customer has watched only a small percentage of
the movies, and most movies have been watched by only
a small percentage of the customers. Based on these facts,
the learning algorithm needs to be able to generalize and

	 Learning Clusters and Recommendations    155

predict successfully, even when new movies or new cus-
tomers are added to the data.

In this case too, we can think of hidden factors, such as
the age and gender of the customer, which makes certain
genres, such as action, comedy, and so on, a more likely
choice. Using decomposition, we can define each customer
in terms of such factors (in different proportions), and
each such factor triggers certain movies (with different

cu
sto

m
ers

cu
sto

m
ers

movies F GX
moviesfactors

facto
rs

Figure 16  Matrix decomposition for movie recommendations. Each row of
the data matrix X contains the scores given by one customer for the movies,
most of which will be missing (because the customer hasn’t watched that
movie). It is factored into two matrices F and G where each row of F is one
customer defined as a vector of factors and each row of G defines the effect of
one factor over the movies; each column of G is one movie defined in terms of
the factors. The number of factors is typically much smaller than the number
of customers or movies; in other words, it is the number of factors that
defines the complexity of the data, named the rank of the data matrix X.

156   chapter 5

probabilities). This is better—easier, cheaper—than try-
ing to come up with rules between pairs of movies. Note
again that such factors are not predefined but are auto-
matically discovered during learning; they may not always
be easy to interpret or assign a meaning to.

Another possible application area is document catego-
rization (Blei 2012). Let us say we have a lot of documents,
and each is written using a certain bag of words. Again the
data is sparse; each document uses only a small number
of words. Here, we can interpret hidden factors as topics.
When a reporter writes a report, they want to write about
certain topics, so each document is a combination of cer-
tain topics, and each topic is written using a subset of all
possible words. This is called latent semantic indexing. It is
clear that this makes more sense than trying to come up
with rules such as “People who use the word X also use the
word Y.”

Thinking of how the data is generated through hidden
factors and how we believe they combine to generate the
observable data is important, and it can make the estima-
tion process much easier. What we discuss here is an addi-
tive model where we take a sum of the effects of the hidden
factors. Models are not always linear—for example, a fac-
tor may inhibit another factor—and learning nonlinear
generative models from data is one of the important cur-
rent research directions in machine learning.

Thinking of how the
data is generated
through hidden factors
and how they combine
to generate the
observable data is
important, and it can
make the estimation
process much easier.

158   chapter 5

In the next chapter, we will discuss a different type
of scenario where the learning system is an agent that is
situated in an environment. The agent, e.g., a robot, has
sensors to detect its state in the environment and can take
actions, as a result of which it gets a reward or not. As we
will see shortly, the aim in this case corresponds to learn-
ing what actions should the agent take in which state to
maximize the total reward.

6

LEARNING TO TAKE ACTION

Reinforcement Learning

Let us say we want to build a machine that learns to play
chess. Assume we have a camera to see the positions of the
pieces on the board, ours and our opponent’s, and the aim
is to decide on our moves so that we win the game.

In this case, learning is difficult because of two rea-
sons. First, it is very costly to have a teacher who will take
us through many games, indicating the best move for
each board state. Second, in many cases, there is no such
thing as the best move; how good a move is depends on
the moves that follow. A single move does not count; a
sequence of moves is good if after playing them we win the
game. The only real feedback is at the end of the game, it’s
the result of the game, whether we win or lose.

There is no such thing as
the best move. A single
move does not count; a
sequence of moves is
good if after playing
them we win the game.

	 Learning to Take Action    161

Another example is a robot that is placed in a maze to
find a goal location. The robot can move in one of the four
compass directions and should make a sequence of move-
ments to reach the goal. There may be obstacles, static or
dynamic, that the robot should navigate around. As long
as the robot moves around, there is no feedback and the
robot tries many moves until it reaches the goal; only then
does it get a reward (for correct completion of the task). In
this case there is no opponent, but we can have a prefer-
ence for shorter trajectories—the robot may be running
on a battery—which implies that in this case we are play-
ing against time.

These two applications have a number of points in
common. There is a decision maker, called the agent, which
is placed in an environment (see figure 17). In the first case,

Reward
State Action

AGENT

ENVIRONMENT

Figure 17  Basic setting for reinforcement learning where the agent
interacts with its environment. At any state of the environment, the agent
takes an action and the action changes the state and may or may not return
a reward.

162   chapter 6

the chessboard is the environment of the game-playing
agent; in the second case, the maze is the environment
of the robot. At any time, the environment is in a certain
state, which means the position of the pieces on the board
or the position of the robot in the maze, respectively. The
decision maker has a set of actions possible: the legal move-
ment of pieces on the chessboard or the movement of the
robot in various directions without hitting any obstacle.
Once an action is chosen and taken, the state changes.

The solution to the task requires a sequence of actions,
and we get feedback in the form of a reward. What makes
learning challenging is that the reward comes rarely and
generally only after the complete sequence has been car-
ried out—we win or lose the game after a long sequence
of moves. The reward defines the aim of the task and is
necessary if we want learning. The agent learns the best
sequence of actions to solve the task where “best” is quan-
tified as the sequence of actions that returns the maximum
reward as early as possible. This is the setting of reinforce-
ment learning (Sutton and Barto 2018).

Reinforcement learning is different in a number of
respects from the learning methods we’ve already dis-
cussed. It is called “learning with a critic,” as opposed to
the learning with a teacher that we have in supervised
learning. A critic differs from a teacher in that a critic does
not tell us what to do, but only how well we have been
doing in the past. The critic never informs in advance! The

	 Learning to Take Action    163

feedback is scarce and when it comes, it comes late. This
leads to the credit assignment problem. After taking several
actions and getting the reward, we would like to assess the
individual actions we did in the past and find the moves
that led us to win the reward so that we can record and
recall them later on.

Actually, what a reinforcement learning program does
is generate an internal value for the intermediate states
or actions in terms of how good they are at leading us
to the goal and getting us the real reward. Once such an
internal reward mechanism is learned, the agent can just
take the local actions to maximize it. The solution to the
task requires a sequence of actions chosen in this way that
cumulatively gets the highest real reward.

Unlike the applications we discussed previously, here
there is no external process that provides the training
data. It is the agent that actively generates data by trying
out actions in the environment and receiving feedback (or
not) in the form of a reward. It then uses this feedback to
update its knowledge so that in time it learns to do actions
that return the highest reward.

K-Armed Bandit

We start with a simple example. The K-armed bandit is a
hypothetical slot machine with K levers. The action is to

A reinforcement
learning program learns
to generate an internal
value for the intermedi
ate states or actions
in terms of how good
they are at leading us to
the goal and getting us
the real reward.

	 Learning to Take Action    165

choose and pull one of the levers; each lever returns a cer-
tain amount of money, which can be zero, which is the
reward associated with the lever (action). The task is to
decide which lever to pull to maximize the reward.

This is a classification problem where we choose one
of K. If this were supervised learning, the teacher would
tell us the correct class, namely, the lever leading to maxi-
mum earning. In this case of reinforcement learning,
we can only try the different levers and keep track of the
best.

Initially estimated values for all levers are zero. To
explore the environment, we can choose one of the levers
at random and observe its reward. If that reward is higher
than zero, we can just store it as our internal reward esti-
mate of that action. Then, when we need to choose a lever
again, we can keep on pulling that lever and receiving pos-
itive rewards. But it may be the case that another lever
leads to a higher reward, so even after finding a lever with
a positive reward we want to try out the other levers; we
need to make sure that we have done a thorough enough
exploration of the alternatives before we become set in our
ways. Once we try out all the levers and know everything
there is to know, we can then choose the action with the
maximum value.

The setting here assumes that rewards are determin-
istic, that we always receive the same reward for a lever.
In a real slot machine, the reward is a matter of chance,

166   chapter 6

and the same lever may lead to different reward values in
different trials. In such a case, we want to maximize our
expected reward, and our internal reward estimate for the
action is the average of all rewards in the same situation.
This implies that doing an action once is not enough to
learn how good it is; we need to do many trials and collect
many observations (rewards) to calculate a good estimate
of the average.

The K-armed bandit is a simplified reinforcement
learning problem because there is only one state—one
slot machine. In the general case, when the agent chooses
an action, not only does it receive a reward or not, but its
state also changes. This next state of the agent may also
be probabilistic because of the hidden factors in the envi-
ronment, and this may lead to different rewards and next
states for the same action.

For example, there is randomness in games of chance
that also affect the action and thus the next state: in some
games there are dice, or we draw randomly from a deck
in card games. In a game like chess, there are no dice or
decks of cards, but there is an opponent whose behav-
ior is unpredictable—another source of uncertainty. In
a robotic environment, the obstacles may move or there
may be other mobile agents that can occlude perception
or limit movement. Sensors may be noisy and motors that
control the actuators may be far from perfect: A robot may
want to go ahead, but because of wear and tear may swerve

	 Learning to Take Action    167

to the right or left. All these are hidden factors that intro-
duce uncertainty, and as usual, we estimate expected val-
ues to average out the effect of uncertainty.

Another reason the K-armed bandit is simplified is
because we get a reward after a single action; the reward
is not delayed and we immediately see the value of our
action. In a game of chess or with a robot whose task is to
find the goal location in a room, the reward arrives only at
the very end, after many actions during which we receive
no reward or any other feedback.

In reinforcement learning, what we want is to be able
to predict how good any intermediate action is in taking
us to the real reward—this is our internal reward estimate
for the action. Initially, this reward estimate for all actions
is zero because we do not yet know anything. We need
data to learn, so we need to do some exploration where we
try out certain actions and observe whether we get any
reward; we then update our internal estimates using this
information.

As we explore more, we collect more data, and we learn
more about the environment and how good our actions
are. When we believe we have reached a level where our
reward estimates of actions are good enough, we can start
exploitation. We do this by taking the actions that generate
the highest reward according to our internal reward esti-
mates. In the beginning when we do not know much, we
try out actions at random; as we learn more, we gradually

168   chapter 6

move from exploration to exploitation by moving from
random choices to those influenced by our internal reward
estimates.

Temporal Difference Learning

For any state and action, we want to learn the expected
cumulative reward starting from that state with that
action. This is an expected value because it is an average
over all sources of randomness in the rewards and the
states to come. The expected cumulative rewards of two
consecutive state-action pairs are related through the Bell-
man equation, and we use it to back up the rewards from
later actions to earlier actions, as follows.

In figure 18, we have a grid world. Let us consider the
final move of the robot that leads to the goal; because we
reach the goal, we receive a reward of, say, 100 units. Now
consider the state and action immediately before that. In
that state we do an action, which, though it does not give
us an immediate reward (because we will still be one step
away from the goal), takes us to the state where with one
more action we can get the full reward of 100. This means
that that action in that state has a lot of value, but it is
still one step away. So, to calculate the value, we discount
the real reward, let us say by a factor of 0.9 (because the
reward is in the future and the future is never certain), and

	 Learning to Take Action    169

we say that that particular state-action pair has an internal
reward of 90.

Note that the real reward there is still zero, because we
still have not reached the goal, but we internally reward
ourselves for having arrived at a state that is only one step
away from the goal. Similarly, the one before that action is
discounted twice and gets an internal reward of 81, and we
can continue assigning internal values to all the previous

10081 90

AB Goal

Figure 18  Temporal difference learning through reward backup. When
we are in state A, if we go right, we get the real reward of 100. In state B just
before that, if we do the correct action (i.e., go right), we get to A where with
one more action we can get the real reward, so it is as if going right in B
also has a reward. But it is discounted (here by a factor of 0.9) because it is
one step before, and it is a simulated internal reward, not a real one. The real
reward for going from B to A is zero; the internal reward of 90 indicates how
close we are to getting the real reward. Similarly, any action that gets us to B
has an internal reward of 81.

In the beginning, we try
out actions at random;
as we learn more, we
move from exploration
to exploitation, from
random choices to
those influenced by
our internal reward
estimates.

	 Learning to Take Action    171

actions in that sequence. Of course, this is for only one
trial episode. We need to do many trials where in each
because of the uncertainties we follow a different path
visiting different states and observing different rewards,
and we average over all those internal reward estimates.
This is called temporal difference (TD) learning; the inter-
nal reward estimate for each state-action pair is denoted
by Q, and the algorithm that updates them is called
Q-learning.

Note that only the final action gets us the real reward;
all the values for the intermediate actions are simulated
rewards. They are not the aim; they only help us to find the
actions that eventually lead us to the real reward. Just like
in a school, a student gets grades based on their perfor-
mance in different courses, but those grades are only simu-
lated rewards indicating how likely it is the student will get
the real reward, which they will get only when they gradu-
ate and become a productive member of their community.

In certain applications, the environment is partially
observable, and the agent does not know the state exactly.
It is equipped with sensors that return an observation,
which it uses to estimate the state of the environment. Let
us say we have a robot that navigates in a room. In the pre-
ceding grid world example, the robot knows its position
exactly, but this may not always be the case. The robot may
not know where it is or what else is in the room. The robot
may have a camera, but an image does not tell the robot

172   chapter 6

the environment’s state in full detail; it only gives some
indication about the likely state. For example, the robot
may only know that there is an obstacle to its left.

In such a case, based on the observation, the agent
predicts its state; or more accurately, it predicts the prob-
ability that it is in each state given the observation and
then does the update for all probable states weighted by
their probabilities. This additional uncertainty makes the
task much more difficult and the problem harder to learn
(Thrun, Burgard, and Fox 2005).

For example, a self-driving car driving in an urban
region knows its environment exactly by accessing its geo-
graphic information system data; in a rural region it has to
rely more on its onboard sensors for navigation.

Learning to Play Games

One of the early applications of reinforcement learning is
the TD-Gammon program that learns to play backgammon
by playing against itself (Tesauro 1995). This program is
superior to the previous NeuroGammon program also
developed by Tesauro, which was trained in a supervised
manner based on plays by experts. Backgammon is a com-
plex task; it features an opponent and extra randomness
due to the roll of dice. Using a relatively simple represen-
tation of the board, TD-Gammon trains a neural network

	 Learning to Take Action    173

that is a multilayer perceptron with one hidden layer by
playing against a copy of itself.

Previously we talked about calculating the value of
an intermediate state by discounting the future reward;
a value network is a regressor that takes the state as input,
here the representation of the backgammon board, and
is trained to estimate its value (the expected cumulative
reward after that state). A policy network that we will see
shortly is a classifier that takes the state as input and is
trained to choose the best action—namely, the one that
takes us to the next state with the maximum value (on
the path that returns the maximum expected cumulative
reward).

Though reinforcement learning algorithms are slower
than supervised learning algorithms, it is clear that they
have a wider variety of application and have the potential
to construct better learning machines. They do not need
any supervision, and this may actually be better since there
will not be any teacher bias. For example, Tesauro’s TD-
Gammon program that learned by playing against itself
in certain circumstances came up with moves that turned
out to be superior to those made by the best players.

A recent impressive work combines reinforcement
learning with deep neural networks to play arcade games
(Mnih et al. 2015). The Deep Q-Network, which is a policy
network, takes directly the 84 × 84 image of the screen
(these are arcade games from the 1980s when image

174   chapter 6

resolution was low) and learns to play the game using
only the image and the score information. The network
has early convolutional layers for analyzing the image
and then fully connected layers to synthesize the best joy-
stick action. Training is end-to-end, from pixels to actions,
using a form of Q-learning that we discussed earlier.

What is also interesting is that the same network with
the same learning algorithm, network architecture, and
hyperparameters can learn any of the 49 games, and on
29 of these it reached or exceeded human performance.

Very recently, the same group developed the AlphaGo
system (Silver et al. 2016) that again combines deep con-
volutional networks with reinforcement learning, this
time to play the game of Go. Go is much more difficult
than backgammon or chess because the board is larger and
there are more moves possible per position, which implies
a much larger search space; Go was long believed to be
beyond our current computing capabilities.

In AlphaGo, the input is a set of specialized features
that represent the 19 × 19 Go board, and the board is pro-
cessed by convolutional layers as if it is an image. There is
the policy network trained to select the best move and the
value network trained to evaluate how close each state is
to winning the game. The policy network is first trained
with a very large database of expert games and then fur-
ther improved through reinforcement learning by playing
against itself. As we discussed in the preface, AlphaGo

	 Learning to Take Action    175

defeated the European Go champion, 5 games to 0, in
2015 and defeated one of the greatest Go players in the
world, 4 games to 1, in March 2016.

What makes AlphaGo impressive is also the high qual-
ity of engineering that went into its implementation, for
example, in the way computation is distributed over paral-
lel processing units. AlphaGo has played, and learned from,
many more games than any human player can play in a
lifetime, and because it learns by playing against a copy
of itself, it is playing against a better and better opponent,
all the time forcing it to devise cleverer and cleverer strate-
gies to win.

A recent version named AlphaGo Zero (Silver et al.
2017) is trained with less human help. The input is just
the raw board without any specialized input features, and
there is no initial supervised training with games of expert
human players. Another difference is that the policy and
value networks are merged into one but deeper network.
AlphaGo Zero defeats AlphaGo and is now considered to
be the best Go player, human or machine. Recently, the
approach was generalized into a single AlphaZero algo-
rithm that can learn to play not only Go but also chess and
shogi (Japanese chess) (Silver et al. 2018).

What was helpful in these approaches is that both
the arcade game screen and the Go board have a two-
dimensional structure that can be analyzed by a convolu-
tional neural network for local features at different levels.

176   chapter 6

The success of DQN and AlphaGo lies in the way that type
of local feature extraction is seamlessly coupled with tem-
poral difference learning using a deep neural network
trained end to end.

Reinforcement learning is also applied to card games.
DeepStack learns to play a two-player variant of poker,
named heads-up no-limit Texas hold’em. Unlike backgam-
mon or Go where both parties have full information about
the environment (i.e., the board), in poker, in addition to
randomness due to draws from a deck, the cards of the
opponent are hidden. In this imperfect-information set-
ting, a player needs to make inferences about the oppo-
nent’s state from their previously observed actions and
act accordingly, which allow complicated strategies such
as bluffing. DeepStack uses a deep neural network and in
a study involving 44,000 hands of poker, defeated profes-
sional poker players (Moravcik et al. 2017).

Pluribus learned how to play the six-player variant
(where there is not one but five opponents) by playing
against five copies of itself, and when playing against five
professional human players or with five copies of Pluribus
playing against one human, it performed significantly bet-
ter than humans over the course of 10,000 hands of poker
(Brown and Sandholm 2019).

Another significant milestone is AlphaStar that learns
to play StarCraft, which is a real-time strategy game that
involve thousands of decisions and imperfect information.

	 Learning to Take Action    177

AlphaStar was rated at Grandmaster level and was above
99.8 percent of officially ranked human players (Vinyals
et al. 2019).

Reinforcement Learning in Real Life

An important question nowadays is how we can move
from games and use deep reinforcement learning in real-
world applications. Games are simplified simulations of
real life: its rules for playing, winning, and losing are well
defined; when there is randomness (e.g., dice in backgam-
mon), it should be fair to both parties. What also makes
games a good testbed for learning is that it is possible to
simulate games very fast on a computer and hence collect
large amounts of data very quickly.

Real life, in contrast, has all sorts of ambiguities
with different sources of uncertainties and sensor noise;
actions take time and may be imperfect; losses incurred
after bad actions imply monetary costs and may even
endanger human safety. In simulating a game, you can try
any random action to see what it gets you (and actually
the proofs of convergence of the temporal difference algo-
rithms require this), but you cannot do this in real life.

Reinforcement learning is ideally suited to sequen-
tial decision-making tasks where we need to generate a
sequence of decisions and where each decision affects later

178   chapter 6

decisions. A decision by itself is not good or bad, so we can-
not always use supervised learning. But the goodness of a
decision depends on all the decisions before and after, so
it’s the whole sequence of decisions that’s being evaluated
at the end. There may also be multiple decision-making
agents whose actions influence each other’s behavior.

There are many scenarios that fit this description (Li
2019). In recommender systems, we need to generate a set
of recommendations to each customer; in healthcare, we
need to generate the correct sequence of treatment deci-
sions; in economics and finance, we need to generate a
good sequence of buy/sell decisions, and so on.

One interesting work is the neural architecture search
algorithm where designing the best neural network struc-
ture is converted to a sequence of decisions on hyperpa-
rameters that define the structure and the connectivity,
and the reward is the accuracy of this constructed net-
work. So there is the controller neural network that is
trained with reinforcement learning, and it learns how to
construct the child network one hyperparameter at a time
(Zoph and Le 2016).

Another interesting application is regulating the
temperature and airflow inside a large-scale data center.
The air temperature is regulated through air-water heat
exchange, and the controls that can be manipulated are
the fan speed (controlling air flow) and the valve opening
(for letting cold water in and expelling warm water). It has

Reinforcement learning
is ideally suited to
sequential decision-
making tasks where
we need to generate a
sequence of decisions
and each decision
affects later decisions.

180   chapter 6

been demonstrated that a simple model with little prior
knowledge trained using reinforcement learning by a few
hours of exploration suffices for the task and is at the same
time cost effective (Lazic et al. 2018).

Robotics is an area where reinforcement learning
is appropriate because the completion of many robot-
ics tasks require the generation of a sequence of cor-
rect actions. Previously we discussed a robot looking for
the goal location in a maze, which is a particular case of
navigation, where a robot, for example, a self-driving car,
needs to find the path from point A to point B subject to
constraints such as obstacles, while optimizing a criterion
such as time. A multi-legged robot needs to move its legs
in the correct order so that it can advance without falling.

One interesting area where robotics meet machine
learning is imitation learning. Learning a task, if there are
many possible actions and if long sequences are needed,
requires a lot of exploration and hence can be slow. A blind
exploration can also be dangerous because some actions
can be harmful to the robot or its environment, so one
possibility is to train the robot in a simulated environ-
ment, at least in early stages. Or, if we have a person who
already knows how to do the task, the robot can learn by
imitation. For example, we can have a robot arm learning
to manipulate objects in its environment (e.g., learning to
put one object on top of another) by watching and imitat-
ing a person.

	 Learning to Take Action    181

In behavioral cloning, the actions taken by the human
are recorded step-by-step and taught to the robot; this cor-
responds to transforming the whole task into a sequence
of supervised learning tasks where for each intermediate
state, the human action defines the required output. For
example, a large data set can be collected by having expert
human drivers drive under a wide variety of road, traffic,
and weather conditions while recording what actions they
take in which situation. Such a data set can then be used
to train a driving program.

Another interesting approach for imitation is called
inverse reinforcement learning, where we first learn a good
reward function by observing the human behavior and
this reward function is then used to train a standard rein-
forcement learning program. This is one hot research topic
in reinforcement learning. Humans can do a lot of tasks,
but they do most tasks without explicitly being aware of
how they do it, so imitation learning helps translate this
knowledge to a robot.

Machine learning has become an important compo-
nent of many products and services in the past decade, as
a result of which we have also started to notice the associ-
ated challenges and risks. We have concerns, for example,
about the privacy and security of the data, as well as the
transparency, fairness, and accountability of making au-
tomated decisions. We cover such concerns in the next
chapter.

7

CHALLENGES AND RISKS

The Other Side of Machine Learning

As any new technology, the use of machine learning intro-
duces new unknowns and possible side effects that need
to be spotted and handled appropriately. On the one
hand, the success of a machine learning solution depends
directly on how much data there is, so we want to have as
many users and as much data as possible. But to be able to
have that, people should be convinced that the system, be
it a product or service, is “on their side”; that it makes law-
ful and responsible decisions; that the users’ right to pri-
vacy are respected; that the system is fair to all users and
is transparent about how its decisions are made; and that
its manufacturers can be held legally accountable when it
makes a decision that causes harm. If these conditions are
not met, people will be unwilling to provide information

The system, be it a
product or service,
should make lawful and
responsible decisions,
respect privacy, be
fair to all users and
transparent in its
operation, and hold
its manufacturers
accountable.

	 Challenges and Risks    185

and as a result there can be no learning and no product or
service to sell.

As a general rule, laws are technology neutral. It’s a
crime to kill a person whether one uses a rock or a drone.
The High Court of England and Wales stated in 2019 that

“the fact that a technology is new does not mean that it is
outside the scope of existing regulation, or that it is always
necessary to create a bespoke legal framework for it.”1

For example, it is a basic human right that there can be
no discrimination because of an individual’s race, gender,
or age. This should be true regardless of who or what is
making the decision; so it should be a given that a machine
learning system is not allowed to make use of such attri-
butes in making a decision.

This may not be always straightforward when we are
learning from large amounts of data, because there can
always be correlations that are not immediately apparent.
For example, the zip code of an individual can be corre-
lated with and hence can act as a proxy of ethnicity (Fava-
retto, De Clercq, and Elger 2019). Learning algorithms are
surprisingly good at finding such correlations; sometimes,
they also find correlations that are spurious, especially
when the data set is small. This is an indicator of the need
for explainability, which is one requirement that we will
discuss shortly.

Automated decision making of course is not new but
was used in more limited scenarios in the past; today its

186   chapter 7

application areas are increasing, which is due not only to
machine learning but also to the increased precision and
decreasing cost of automation.

Airplanes have had autopilots, trains and boats their
guidance systems, but building self-driving cars is a much
more difficult task; consider an urban environment, which
has not only many other cars but also other dynamic
agents such as pedestrians, cyclists, and so on. Driving is
a mode of transport that is everyday and ubiquitous, so
automating it will have more impact. Another example is
automated trading where computer programs make buy-
or-sell decisions. Face recognition is good if it helps the
police to catch criminals; it is bad if it is used to track
people without their knowledge and consent. The more
widespread use of automation technologies, which depend
increasingly on machine learning, is helpful, but comes
with downsides, one being that we become reliant on them
too much and too quickly.

When a human driver causes an accident, its effect is
limited because the probability that another driver makes
the exact same erroneous decision is very small; if a self-
driving car causes an accident, this means that all other
cars of that make are sure to cause an accident if they are
put in the same scenario. That is why when an airplane
is involved in an accident, all other airplanes of the same
make are immediately grounded until the cause of the
accident is determined and eliminated; in the future, it

	 Challenges and Risks    187

may happen that your self-driving car will refuse to run
in the morning because some other car has recently been
involved in an accident in another city and the reason has
not yet been determined.

In addition to risks associated with automated deci-
sion making, another source of risk in machine learning
is related to data, and this has different aspects. First is
the need for data privacy and security. Data may contain
personal information that needs to be kept confidential;
so any collection, storage, and processing of data should
be done with privacy and security concerns in mind. Sec-
ond is that the quality of any machine learning solution
directly depends on the quality of the data. If the data is
biased or outright corrupt so will all the decisions based
on that data be. Third is the element of trust. In high-
risk applications, for example in the medical domain, we
require our trained models to be interpretable so that they
provide not only a decision but also a human-readable
explanation that justifies that particular decision.

Let us now discuss these aspects one by one.

Data Privacy and Security

When we have a lot of data, its analysis can lead to valu-
able results, and historically, data collection and analysis
have resulted in significant findings for humanity, in many

188   chapter 7

domains from medicine to astronomy. The current wide-
spread use of digital technology allows us to collect and
analyze the data quickly and accurately, and in numerous
new domains.

With more and detailed data, the critical point today
is data privacy and security (Horvitz and Mulligan 2015).
How can we make sure that we collect and process data
without infringing on people’s privacy concerns and that
the data is not used for purposes beyond its original
intention?

We expect individuals in a society to be aware of the
advantages of data collection and analysis in domains
such as health care and safety. And even in other domains
such as retail, people always appreciate services and prod-
ucts tailored to their likes and preferences. Still, no one
likes to feel that their private life is being pried into. Our
smart devices, for example, should not turn into digital
paparazzi recording the details of our lives and making
them available without our knowledge.

In the past, information about people used to be dis-
tributed among data collectors where each had access only
to the part that it needed: the bank had data only related to
our financial situation, the employer had data only related
to our work, and so forth. There was also data related to
services provided by different companies, such as a travel
agent, or a utility provider, again each seeing a small por-
tion of the person’s profile, and our social interactions

	 Challenges and Risks    189

were not recorded. In a world where these different pieces
of data are made easily accessible, even if each one is par-
tially informative and some seemingly unimportant, they
can be combined to make very detailed inferences about
a person. This is both the power and the risk of learning
from data.

The basic requirements in data privacy are that the
user who generates the data should always know what
and how much data is collected, what part of it is stored,
whether that data will be analyzed for any purpose, and if
so, what that purpose is. No more data than what is abso-
lutely necessary should be collected. The data collector
should be completely open about what is collected.

This requirement of transparency implies that the
owner of the data should always be informed during both
data collection and use. Before any analysis, the data
should be sanitized—that is, all the personal details should
be hidden to make the record anonymous, which is not a
straightforward process. With human records, for instance,
just removing unique identifiers such as the name or social
security number is not enough; fields such as birth date,
zip code, and so on provide partial clues, and individuals
can be identified by combining such clues (Sweeney 2002).

Data is becoming such a valuable raw resource that it
behooves the collector of the data to take all the necessary
steps for its safekeeping and to not share it with someone
else without the explicit consent of the data owner.

190   chapter 7

Individuals should have complete control over their
data. They should always have the means to view what
data of theirs has been collected; they should be able to
ask for its correction or complete removal.

A recent line of research is in privacy-preserving learn-
ing algorithms. Let us say that we have parts of data
from different sources (e.g., different countries may have
patients suffering from the same disease) and that they
do not want to lend their data (detailed information about
their citizens) to a central user to train a model with all the
data combined. In such a case, the easiest possibility is to
share the data in a form that is sufficiently anonymized,
which may not always be easy.

One research topic in machine learning is called differ-
ential privacy, where the idea is to knowingly corrupt the
data before sharing it so that individual records cannot be
identified while still allowing correct generalizations to be
learned from the whole.

Another approach is called homomorphic encryption,
where the data is stored encrypted and is also processed
without decrypting it. Because the data always remains
encrypted, the privacy of the information is preserved;
the disadvantage is that this type of processing requires a
lot of extra computation.

Yet another interesting idea for privacy is federated
learning, where the idea is to have multiple copies of the
model for different users. Each model then learns from its

	 Challenges and Risks    191

user and is updated by its local data, also regularly sharing
the model updates with the other users. Because the other
users see only the model updates and not the data, the
data of each user is kept private.

Concerns over data privacy and security should be an
integral part of any data analysis scenario, and it should
be resolved before any learning is done. Mining data is just
like mining for gold—before you start any digging, you
need to make sure that you have all the necessary permits.
In the future, we may have data processing standards
where every data set contains some metadata about this
type of ownership and permission information; then, it
may be required that any machine learning or data analy-
sis software check for these and run only if the necessary
stamps of approval are there.

Biased Data

How good a learned model will be depends first of all on
how good its training data is. Any problems with that data
will be reflected in the quality of the model.

One source of problems is possible mishaps in collect-
ing the data. For example, if a face recognition data set
contains more White faces than those of other races, any
face recognizer trained on that data will perform poorly
on races that are underrepresented. Basically, the error

192   chapter 7

for any class depends on how many training instances
there are of that class, and so the learning algorithm will
have less motive to correct the errors on classes that have
fewer training instances. This type of sampling error can
be corrected by collecting a balanced training sample that
includes the whole range of racial identities.

Basically, we need to make sure to match the distri-
bution of the training data with the distribution of the
data encountered in the field; any mismatch will result in
a poor model. For example, we frequently see that scien-
tific articles that report very high accuracies in the lab do
not always lead to successful commercial products. This is
partly because the lab conditions are close to ideal, where,
for example, data is collected carefully and with high preci-
sion; such conditions are almost impossible to duplicate in
the real world.

Such erroneous sampling may also have indirect
causes such as biases in the underlying process that gener-
ates the data. For example, data may have been collected
in the past where there may have been lack of diversity; a
bank may have had fewer women than men as customers
in the past, or fewer customers from certain minorities.
Achieving fairness, by detecting and mitigating such biases
is an important research topic in machine learning.

The fact that a model that learns the general behavior
in the data does not make good decisions for underrepre-
sented cases or outliers has other implications as well.

	 Challenges and Risks    193

For example, there is an important risk in basing rec-
ommendations too much on past use and preferences. If
a person only listens to songs similar to the ones they
listened to and enjoyed before, or watches movies similar
to those they watched and enjoyed before, or reads books
similar to the books they read and enjoyed before, then
there will be no new experience and that will be limiting,
both for the person and for the company that is always
eager to find new products to sell. So in any such recom-
mendation scheme, there should also be some attempt at
introducing some diversity.

A recent study (Bakshy, Messing, and Adamic 2015)
has shown that a similar risk also exists for interactions
on social media. If a person follows only those people they
agree with and reads posts, messages, and news similar to
the ones they have read in the past, they will be unaware
of other people’s opinions and that will limit their experi-
ence, as opposed to traditional news media outlets, such
as newspapers or TV, that contain a relatively wider range
of news and opinions.

Model Interpretability

As we have more and more computer systems that are
trained from data to make autonomous decisions, we need
to be concerned with relying so much on computers. One

194   chapter 7

important requirement is the validation and verification
of software systems—that is, making sure that they do
what they should do and do not do what they should not
do.

This may be especially difficult for models trained
from data, because training involves different sources of
randomness in data and optimization; this makes trained
software less predictable than programmed software.

Our approach in testing a trained model is to check its
performance on data unused in training, to see how well
it has generalized from the particular training examples.
After having trained the model on the training data, which
is one small random subset of all possible cases, we test it
on a validation data that is another random subset, and
we use the accuracy on this new data as our criterion of
the expected accuracy in later use. This is a useful criterion,
but it is not sufficient, because both training and valida-
tion sets are small and randomly chosen, and changing
them may lead to changes in the accuracy estimates.

A second problem is sensitivity. For example, it has
been shown with deep neural networks that slightly per-
turbed versions of valid examples sometimes cause very
big changes at the output. Such adversarial examples are
taken as an indicator that the model has not generalized
well but is still greatly dependent on the individual train-
ing instances. This is disturbing because we know that our
sensors are never perfect and there can always be noise at

	 Challenges and Risks    195

the input. For example, we do not want a self-driving car
to run amok if bad weather clouds its sensors or the road
signs get muddy.

Because of all these reasons, we should always ques-
tion the decision made by a trained model and require
additional validation, especially in domains where wrong
decisions have possible high losses. We want our model to
provide not only an output but also an explanation as to
how it came to that decision. Such explanations should be
in a format that does not require any expertise in machine
learning, but any user of the system should be able to
understand and assess them.

The internal operation of a deep neural network is
not easily understandable; it’s an example of a black box
model. However, a linear model where we calculate a total
score as a weighted sum of different factors, or a decision
tree that can be written down in terms of if-then rules, are
easy to understand and hence preferrable (see figure 6).
Such rules can be checked and assessed by human experts
to see if the trained model has learned meaningful rules.
This is the topic of explainable artificial intelligence (XAI),
which is another research area that is increasingly becom-
ing important as trained models are being used more and
more (Gilpin et al. 2018).

One interesting idea is that of “counterfactuals”
where the idea is to inform the user how the decision
could have been different: for example, “You were denied

We want our model
to provide not only an
output but also an
explanation as to how
it came to that decision,
in a format under
standable by anyone.

	 Challenges and Risks    197

a loan because your annual income was £30,000. If your
income had been £45,000, you would have been offered
a loan” (Wachter, Mittelstadt, and Russell 2018, 844). Of
course, in generating explanations as well as counterfactu-
als, it is necessary to preserve commercial secrets; banks
for example would not want to disclose the exact formula
they use for credit scoring.

Ethical, Legal, and Other Social Aspects

As any engineering product, the correct behavior of a
trained model should be checked rigorously. We have
already considered possible biases in the training data that
may be harmful. In any scenario where automatic deci-
sions are made based on past data, such as finance, health
care, or justice, we have to guarantee transparency in the
collection of data and fairness in making decisions. We also
have to make sure that such systems use models that are
interpretable, and that their decisions be explainable to its
users, and we have to be able to hold the manufacturers of
such systems accountable.

When intelligence is embodied and the system takes
physical actions, the correctness of the behavior becomes
an even more critical issue and even human life may be at
stake. So another requirement is safety. The system does
not need to be a drone with onboard weaponry for this

198   chapter 7

to be true; even an autonomous car becomes dangerous
if it is driven badly. When such concerns come into play,
the usual expected value or utilitarian approaches do not
apply, as is discussed in the “trolley problems,” a variant of
which is as follows.

Let us say you are riding in an autonomous car when
a child suddenly runs across the road. Assume the car is
going so fast that it knows it cannot stop. But it can still
steer, and it can steer to the right to avoid hitting the child.
But let us say that the child’s mother is standing to the
right of the road. How should the car decide? Should it
go ahead and hit the child, or steer right and hit the mom
instead? How can we program such a decision? Or should
the car instead steer left and drive off the cliff after cal-
culating that your life is worth less than that of the child
or the mother’s? Can the driving software be allowed to
take factors such as age or gender into account in making
a decision?

This seems like an extreme case—trolley problems
are thought experiments—however, the point is that in
many decision-making scenarios, there are multiple pos-
sible actions with possibly harmful results, and we need to
come up with a way to program such decisions in machines
that is in line with our customary standards of ethics and
morality.

Increased intelligence due to machine learning can
also be used for outright malicious and criminal practices.

	 Challenges and Risks    199

Pattern recognition technologies such as face or speech
recognition can be used for mass surveillance. Intelligent
robots can use their intelligence to become better at kill-
ing. Collected data can be analyzed for subversive pur-
poses, such as to influence voter decisions. These are some
other ethical and legal implications of the use of machine
learning.

Another aspect is that making machines more intel-
ligent leads to higher automation and therefore job loss.
Before, jobs became outdated from one generation to
the next—for example, sons of blacksmiths became car
mechanics—but now it’s happening within a generation.
Once, people learned a job in their twenties that they did
with small updates until they retired. Now it seems as if we
need to learn a new job every ten or fifteen years. To be able
to catch up with increasing intelligence of the machines,
we need to continuously increase our knowledge as well,
which means that lifelong education programs are going
to become more important in the future. This also implies
that unemployment should lose its social stigma but be
treated as a normal state of affairs; that time in between is
the period when the person is learning their next job, their
next version, so to speak.

The next, final chapter will discuss possible future
directions of machine learning research and applications.

8

WHERE DO WE GO FROM HERE?

Make Them Smart, Make Them Learn

Machine learning has already proved itself to be a viable
technology, and its applications in many domains are
increasing every day. This trend of collecting and learn-
ing from data is expected to continue even stronger in the
near future (Jordan and Mitchell 2015). Analysis of data
allows us to both understand the process that underlies
the past data—just like scientists have been doing in dif-
ferent domains of science for hundreds of years—and also
predict the behavior of the process in the future.

A few decades ago, computing hardware used to
advance one microprocessor at a time; every new micro-
processor—first size 8, then 16, then 32 bits—could do
slightly more computation in unit time and could use
slightly more memory, and this translated to slightly

202   chapter 8

better computers. Similarly, computer software used to
advance one programming language at a time. Each new
language made some new type of computation easier to
program. When computers were used for number crunch-
ing, we programmed in Fortran; when we used them for
business applications, we used Cobol; later on, when com-
puters started to process all types of and more complex
types of information, we developed object-oriented lan-
guages that allowed us to define more complicated data
structures together with the specialized algorithms that
manipulate them.

Then, computing started to advance one operating sys-
tem at a time; each new version made computers easier to
use and supported a new set of applications. Today, com-
puting is advancing one smart device or one smart app
at a time. Once, the key person who defined the advance
of computing was the hardware designer, then it was the
software engineer, then it was the user sitting in front of
their computer, and now it is anyone while doing anything.

Nobody eagerly awaits a new microprocessor any-
more, and neither a new programming language nor a new
operating system version is newsworthy. Now we wait for
the next new device or app, smart either because of its
designer, or because it learns to be smart.

More and more of our lives are being projected in the
digital domain, and as a result we are creating more and
more data. The earliest hard disks for personal computers

	 Where Do We Go from Here?    203

had a capacity of five megabytes; now a typical computer
comes with five hundred gigabytes—this is one hundred
thousand times more storage capacity in roughly thirty
years. A reasonably large database now stores hundreds
of terabytes, and we have already started using the pet-
abyte as a measure; very soon, we will jump to the next
measure, the exabyte, which is one thousand petabytes
or one million terabytes. Together with an increase in
storage capacity, processing has also become cheaper and
faster thanks to advances in technology that deliver both
faster computer chips and parallel architectures contain-
ing thousands of processors that run simultaneously, each
solving one part of a large problem.

The trend of moving from all-purpose personal comput-
ers to specialized smart devices is also expected to acceler-
ate. We discussed in chapter 1 how in the past organizations
moved from a computer center to a distributed scheme with
many interconnected computers and storage devices; now
a similar transformation is taking place for a single user. A
person no longer has one personal computer that holds all
their data and does all their processing; instead, their data
is stored in the “cloud,” in some remote offsite data center,
but in such a way as to be accessible from all their smart
devices, each of which accesses the part it needs.

What we call the cloud is a virtual computer center
that handles all our computing needs. We do not need
to worry about where and how the processing is done or

204   chapter 8

where and how the data is stored as long as we can keep
accessing it whenever we want. This used to be called grid
computing, analogous to the electrical grid made up of an
interconnected set of power generators and consumers; as
consumers, we plug our TV in the nearest outlet without
a second thought as to where the electricity comes from.

This also implies connectivity with larger bandwidths.
Streaming music and video is already a feasible technol-
ogy today. CDs and DVDs we keep on our shelves (that
had once supplanted the nondigital LPs and videotapes)
have now in turn become useless and are replaced by some
invisible source that stores all the songs and the mov-
ies. E-book and digital subscription services are quickly
replacing the printed book and the bookstore, and search
engines have long ago made window stoppers out of thick
encyclopedias.

With smart devices, there is no longer any need for
millions of people to store separate copies of the same
song/movie/book locally. The motto now is: Do not buy it,
rent it! Buy the smart device, or the app, or the subscrip-
tion to the service, and the bandwidth that allows you to
access it when you need it.

This change and ease in accessibility also offers new
ways to “package” and sell products. For example, tradi-
tionally music LPs and CDs corresponded to an “album”
that is made up of a number of songs; it is now possible
to rent individual songs. Similarly, it is now possible to

	 Where Do We Go from Here?    205

purchase a single short story without buying the book of
collected stories.

In chapter 5, we discussed the use of machine learning
in recommendation systems. With more shared data and
streaming, there will be more data to analyze, and further-
more, the data will be more detailed. For example, now we
also know how many times a person listened to a song or
how far they watched into a movie, and such information
can be used as a measure of how much the person enjoyed
the product.

With advances in mobile technology, there is continu-
ing interest in wearable devices. The smartphone, a wear-
able device, is now much more than a phone; it also acts
as an intermediary for smaller smart “things,” such as a
watch or glasses, by putting them online. The phone may
become even smarter in the near future, for example, with
an app for real-time translation: You’ll speak in your own
language on one end and the person on the other end will
hear it automatically translated into their own tongue, not
only with the content syntactically and semantically cor-
rect but also in your voice and uttered with correct empha-
sis and intonation.

Machine learning will help us make sense of an increas-
ingly complex world. Already we are exposed to more data
than what our sensors can cope with or our brains can pro-
cess. Information repositories available online today con-
tain massive amounts of digital text and are now so big

Machine learning will
help us make sense of
an increasingly complex
world. Already we are
exposed to more data
than what our sensors
can cope with or our
brains can process.

	 Where Do We Go from Here?    207

that they cannot be processed manually. Using machine
learning for this purpose is called machine reading.

We need search engines that are smarter than the ones
that use just keywords. Currently we have information
distributed in different sources or mediums, so we need
to query them all and merge the responses in an intelli-
gent manner. These different sources may be in different
languages—for example, a French source may contain
more information on the topic even though your query is
in English. A query may also trigger a search in an image or
video database. And still, the overall result should be sum-
marized and condensed enough to be digestible by a user.

Web scraping is when programs automatically surf the
web and extract information from web pages. These web
pages may be social media, and accumulated information
can be analyzed by learning algorithms, for instance, to
track trending topics and the detection of sentiment, opin-
ions, and beliefs about products and people—for example,
politicians in election times. Another important research
area where machine learning is used in social media is
to identify the “social networks” of people who are con-
nected; analyzing such networks allows us to find cliques
of like-minded individuals, or to track how information
propagates over social media.

One of the current research directions is in adding
smartness—that is, the ability to collect, process, and
make inferences from data, as well as to share it with

208   chapter 8

other online devices—to all sorts of traditional tools and
devices, including traditional wearables such as glasses
and watches. When more devices are smart, there will
be more data to analyze and make meaningful infer-
ences from. Different devices and sensors collect different
aspects of the task, and a critical task will be to combine
and integrate these multiple modalities. This implies all
sorts of new interesting scenarios and applications where
learning algorithms can be used.

Smart devices can help us both at work and at home.
Machine learning helps us in building systems that can
learn their environment and adapt to their users, to be
able to work with minimum supervision and maximum
user satisfaction.

Important work is being done in the field of smart
cars. Cars that are online allow their passengers to be
online and can deliver all types of online services, such as
streaming video, over their digital infotainment systems.
Cars that are online can also exchange data for mainte-
nance purposes and access real-time information about
the road and weather conditions. If you are driving under
difficult conditions, a car that is a mile ahead of you is a
sensor that is a mile ahead of you.

But more important than being online is when cars
will be smart enough to help with the driving itself.
Cars already had assistance systems for cruise control,
self-parking, and lane keeping, but these days they are

	 Where Do We Go from Here?    209

becoming even more capable. The ultimate aim is for them
to completely take over the task of driving, and to that end
we already have prototypes of such autonomous vehicles
today. Of course, this is also true also for buses, trucks,
and so on. For example, in the case of a pandemic when
the population is on lockdown, self-driving trucks can
transport products from factories to cities.

The visual system of a human driver does not have a
very high resolution, and they can only look in a forward
direction. Though their visual field is slightly extended
through the use of side and rearview mirrors, blind spots
remain. A self-driving car, on the other hand, can have
cameras with higher resolution in all directions and can
also use sensors that a human does not have, such as GPS,
ultrasound, or night vision, or it can be equipped with a
special type of radar, called LIDAR, that uses a laser for
measuring distance. A smart car can also access all sorts of
extra information, such as the weather, much faster. An
electronic driver has a much shorter reaction time.

Machine learning plays a significant role in self-
driving cars that result in both smoother driving, faster
control, and greater fuel efficiency, but also in smart sens-
ing, for example, by automatic recognition of pedestrians,
cyclists, traffic signs, and so forth. Self-driving cars will
not only be safer but they will also be faster; the speed lim-
its we have are set because of the relatively slower reaction
times of human drivers. There are still problems though:

210   chapter 8

Lasers and cameras are not very effective in harsh weather
conditions—when there is rain, fog, or snow—so technol-
ogy should advance until we get smart cars that can run in
all types of weather.

Self-driving cars and robot taxis are expected to take
over driving in cities and on highways in the next decade. It
also seems very likely that sometime in the next decade or
so, cars and drones will fuse and we will have self-piloting
flying cars, with their concomitant tasks that will be best
handled by machine learning.

Machine learning has the basic advantage that a task
does not need to be explicitly programmed but can be
learned. Space will be the new frontier for machine learning
as well. Future space missions will very likely be unmanned.
Before, we needed to send humans because we did not have
machines that were as smart and versatile, but now we
have capable robots. If there are no humans on board, the
load will be lighter and simpler, and there will be no need to
bring the load back. If a robot is to boldly go where no one
has gone before, it can only be a learning robot.

High-Performance Computation

With big and bigger data, we need storage systems
that have higher capacity and faster access. Processing
power will necessarily increase so that more data can be

	 Where Do We Go from Here?    211

processed in a reasonable time. This implies the need for
high-performance computer systems that can store a lot
of data and do a lot of computation very quickly.

There are physical limits such as the speed of light and
the size of the atom, which suggests an upper limit on the
speed of transfer1 and a lower limit on the size of the basic
electronics. The obvious solution to this is parallel process-
ing—if you have eight lines in parallel, you can send eight
data items at the same time; and if you have eight proces-
sors, you can process those eight items simultaneously, in
the time it takes to process a single one.

Today parallel processing is routinely used in com-
puter systems. We have powerful computers that contain
thousands of processors running simultaneously. There
are also multicore machines where a single computing
element has multiple “cores” that can do simple computa-
tions simultaneously, implementing parallel processing in
a single physical chip.

But high-performance computation is not just a hard-
ware problem; we also need good software interfaces to
distribute the computation and data over a very large
number of processors and storage devices. Indeed, soft-
ware and hardware for parallel and distributed computa-
tion for big data are important research areas in computer
science and engineering today.

In machine learning, the parallelization of learning
algorithms is becoming increasingly important. Models

212   chapter 8

can be trained in parallel over different parts of the data on
different computers and then these models can be merged.
Another possibility is to distribute the processing of a sin-
gle model over multiple processors. For example, with a
deep neural network composed of thousands of units in
multiple layers, different processors can execute different
layers or subsets of layers working in a pipeline manner.

The graphical processing unit (GPU) was originally made
for rapid processing and the transfer of images in graphi-
cal interfaces—for example, in video game consoles—but
the type of parallel computation and transfer used for
graphics has also made them suited for many machine
learning tasks. Indeed, specialized software libraries are
being developed for this purpose and GPUs are frequently
used by researchers and practitioners effectively in various
machine learning applications; for example, the AlphaGo
network that we discussed in chapter 6 is parallelized to
run on GPUs. There is also research in developing more
specialized processing units, for example, to carry out the
sort of calculations used in neural networks; today’s deep
neural networks with hundreds of layers and millions of
parameters run too slowly on an ordinary CPU.

We are seeing a trend toward cloud computing in
machine learning applications too, where instead of buy-
ing and maintaining the necessary hardware, people rent
the use of offsite data centers. A data center is a physical

	 Where Do We Go from Here?    213

site that houses a very large number of computing serv-
ers with many processors and ample storage. There are
typically multiple data centers in physically different loca-
tions; they are all connected over a network, and the tasks
are automatically distributed and migrated from one to
the other, so that the load from different customers at dif-
ferent times and in different sizes is balanced. All of these
requirements fuel significant research today.

One important use of the cloud is in extending the
capability of smart devices, especially the mobile ones.
These online, low-capacity devices can access the cloud
from anywhere to exchange data or request computation
that is too large or complex to do locally. Consider speech
recognition on a smartphone. The phone captures the
acoustic data, extracts the basic features, and sends them
to the cloud. The actual recognition is done in the cloud
and the result is sent back to the phone.

In computing, there are two parallel trends. One is
in building general-purpose computers that can be pro-
grammed for different tasks and for different purposes,
such as those used in servers in data centers. The other is
to build specialized computing devices for particular tasks,
packaged together with specialized input and output. The
latter used to be called embedded systems but are today
called cyber-physical systems, to emphasize the fact that
they work in the physical world with which they interact.

214   chapter 8

A system may be composed of multiple such units (some
of which may be mobile), and they may be interconnected
over a network—for example, a car, a plane, or a home
may contain a multitude of such devices for different
tasks. Making such systems smart—in other words, able
to adapt to their particular environment, which includes
the user—is an important research direction.

Following this idea, one popular research topic these
days is edge computing, where we want to have as much
of the specialized processing as possible done “on the
edge”—that is, closer to where the data originates. With
computation getting cheaper and smaller, most of the
necessary computation can be done locally as soon as it
is sensed, which has the advantages that we do not need
to transmit data back and forth, so there is less network
traffic and hence the response is also faster. This is espe-
cially interesting in artificial intelligence where we have
large chunks of data such as video, image, or sound, and
processing them on the spot pushes intelligence to the
edge; hence the name “edge AI.”

A related concept is fog computing, where we have gen-
eral computing services, just like in cloud computing, but
they are closer to the user. For example, they may be in our
local area network as opposed to in a faraway data center,
similar to how fog is a thin cloud closer to the earth, or us.
Again, the advantages are less communication and faster
decision making.

	 Where Do We Go from Here?    215

How Green Is My AI?

Recently with the proliferation of personal comput-
ers, smart phones, Internet, and data centers, the total
amount of electricity used to power the computers around
the globe has reached a considerable amount. Computing
used to be considered environmentally friendly—it is bet-
ter to read from the screen than to print it on paper—
which is partially true, but we always need to keep in mind
that all our calculations, data storage, and communication
run on electricity. All those machines need to be powered
up and they need to be cooled down, which implies an
ever-increasing carbon footprint.

Machine learning is particularly power-hungry. We
need to store large data sets and typically learning algo-
rithms need to do a large number of learning iterations,
each of which takes a lot of computation, and hence power,
when we use a complex model such as a deep neural net-
work with many layers. Schwartz et al. (2019) report that

“the computations required for deep learning research
have been doubling every few months, resulting in an esti-
mated 300,000x increase from 2012 to 2018.”

This has a number of disadvantages: First, if a model
uses too much power, it cannot be implemented on a
mobile device running on a battery. Second, a model that
uses too much computation will be expensive and such a
device cannot be sold to a large customer base. Third, all

216   chapter 8

that power needs to be produced somehow, and we know
that frequently countries need to burn coal or gas to gen-
erate that electricity, which has all sorts of detrimental
effects on the environment including the contribution to
global warming.

Research on more energy-efficient computer archi-
tectures is an important topic for computing, and energy
efficiency has become an important criterion in assessing
the quality of an algorithm; this is especially relevant for
machine learning that is both data- and computation-heavy.

Data Mining

Though the most important, machine learning is only one
step in a data mining application (Han and Kamber 2011).
There is also the preparation of data beforehand and the
interpretation of the results afterward.

Making data ready for mining involves several stages.
First, from a large database with many fields, we select the
parts that we are interested in and create a smaller database
to work with. It may also be the case that the data comes
from different databases, so we need to merge them. The
level of detail may also be different—for instance, from an
operational database we may extract daily sums and use
those rather than the individual transactions. Raw data
may contain errors and inconsistencies or parts of it may

Energy efficiency has
become an important
criterion in assessing
the quality of an
algorithm; this is
especially relevant for
machine learning that
is both data- and
computation-heavy.

218   chapter 8

be missing, and those should be handled beforehand in a
preprocessing stage.

After extraction, data is stored in a data warehouse
on which we do our analysis. One type of data analysis
is manual where we have a hypothesis—“people who buy
X also buy Y”—and check whether the data supports the
hypothesis. The data is in the form of a spreadsheet where
the rows are the data instances—baskets—and the col-
umns are the attributes—products. One way of concep-
tualizing the data is in the form of a multidimensional data
cube whose dimensions are the attributes, and data analy-
sis operations are defined as operations on the cube, such
as slice, dice, and so on. Such manual analysis of the data
as well as visualization of results is made easy by online
analytical processing (OLAP) tools.

OLAP is restrictive in the sense that it is human-driven,
and we can only test the hypotheses we can imagine. For
example, in the context of basket analysis, we cannot find
any relationship between distant pairs of products; such
discoveries require a data-driven analysis, as is done by
machine learning algorithms.

We can use any of the methods we discussed in previ-
ous chapters, for classification, regression, clustering, and
so on, to build a model from the data. Typically, we divide
our data into two as a training set and a validation set.
We use the first part for training our model and then we
measure its prediction accuracy on the validation set. By

	 Where Do We Go from Here?    219

testing on instances not used for training, we want to esti-
mate how well the trained model would do if used later on,
in the real world. The validation set accuracy is one of our
main criteria in accepting or rejecting the trained model.

In the previous chapter, we covered the interpretabil-
ity of machine learning models, and this is an important
requirement in data mining. People who use the predic-
tive models do not always know machine learning, so it is
important that whatever is learned from the data be pre-
sented in a form that is understandable by them. In many
data mining scenarios—for example, in credit scoring—
this process of knowledge extraction and model assess-
ment by people may be important and even necessary in
validating the model trained from data.

Visualization tools can also help here. Actually, visual-
ization is one of the best tools for data analysis, and some-
times just visualizing the data in a smart way is enough to
understand the characteristics of the process that under-
lies a complicated data set, without any need for further
complex and costly statistical processing; see Börner 2015
for examples.

As we have more data and more computing power, we
can attempt more complicated data mining tasks that try
to discover hidden relationships in more complex scenar-
ios. Most data mining tasks today work in a single domain
using a single source of data. Especially interesting is the
case where we have data from different sources in different

220   chapter 8

modalities; mining such data and finding dependencies
across sources and modalities is a promising research
direction.

Data Science

The advances and successes of machine learning meth-
ods on big data and the promise of more have prompted
researchers and practitioners in the industry to call this
endeavor a new branch of science and engineering. There
are still discussions about what this new field of data sci-
ence should cover, but it seems as if the major topics are
machine learning, high-performance computing, and the
social, ethical, and legal implications of data collection,
analysis, and data-driven decision making.

Of course, not all learning applications need a cloud, or
a data center, or a cluster of computers. One should always
be wary of hype and companies’ sale strategies to invent
new and fancier names under which to sell old products.

However, when there is a lot of data and the process
involves a lot of computation, efficient implementation
of machine learning solutions is an important matter.2
Another integral part is the ethical and legal implications
of data analysis and processing, as we discussed in chap-
ter 7. As we collect and analyze more and more data, our
decisions in various domains will become more and more

	 Where Do We Go from Here?    221

automated and data-driven, and we need to be concerned
about the implications of such autonomous processes and
the decisions they make.

It seems as if we will need many “data scientists” and
“data engineers” in the future, because we see today that
the importance of data and extracting information from
data has been noticed in many domains. Such scenarios
have characteristics that are drastically different than
those of traditional statistics applications.

First, the data now is much bigger—consider all the
transactions done at a supermarket chain. For each in-
stance, we have thousands of attributes—consider a gene
sequence. The data is not just numbers anymore; it con-
sists of text, image, audio, video, ranks, frequencies, gene
sequences, sensor arrays, click logs, lists of recommenda-
tions, and so on. Most of the time data does not obey the
parametric assumptions, such as the bell-shaped Gauss-
ian curve, that we frequently use to make estimation eas-
ier. Instead, with the new data, we need to resort to more
flexible nonparametric models whose complexity can ad-
just automatically to the complexity of the task underlying
the data. All these requirements make machine learning
more challenging than statistics as we used to know and
practice it.

In education, this implies that we need to extend the
courses on statistics to cover these additional needs, and
teach more than the well-known but now insufficient,

222   chapter 8

mostly univariate (having a single input attribute) para-
metric methods for estimation, hypothesis testing, and
regression. It has also become necessary to teach the basics
of high-performance computing, both the hardware and
the software aspects, because in real-world applications
how efficiently the data is stored and manipulated may be
as critical as the prediction accuracy. A student of data sci-
ence today also needs to know the social, ethical, and legal
aspects of all stages of machine learning, including the col-
lection of data, its storage and processing, and automated
decision making based on that data.

Machine Learning, Artificial Intelligence, and the Future

Machine learning is one way to achieve artificial intelli-
gence. By training on a data set, or by repeated trials using
reinforcement learning, we can have a computer program
behaving so as to maximize a performance criterion, which
in a certain context appears intelligent.

One important point is that intelligence is a vague term
and its applicability to assess the performance of com
puter systems may be misleading. For example, evaluating
computers on tasks that are difficult for humans, such as
playing chess, is not a good idea for assessing intelligence.
Chess is a difficult task for humans because it requires
deliberation and planning, whereas humans, just like

	 Where Do We Go from Here?    223

other animals, have evolved to make very quick decisions
using limited sensory data with limited computation. For
a computer, it is much more difficult to recognize the face
of its opponent than to play chess. Whether a computer
can play chess better than the best human player is not
a good indicator that computers are more intelligent, be-
cause human intelligence has not evolved for tasks like
chess.

Researchers use game playing as a testing area in
artificial intelligence because games are relatively easy to
define with their formal rules and clearly specified criteria
for winning and losing. There are a certain number of
pieces or cards, and even if there is randomness its form
is well defined: the dice should be fair and draws from
the deck should be uniform. Attempts to the contrary
are considered cheating behavior. In real life, all sorts of
randomness occur, and for its survival every species is
slowly evolving to be a better cheater than the rest.

The power that artificial intelligence promises is a con-
cern for many researchers, and not surprisingly there is a
call for regulation. In a recent interview (Bohannon 2015),
Stuart Russell, a prominent researcher and coauthor of
the leading textbook on artificial intelligence (Russell and
Norvig 2020), says that unlimited intelligence may be as
dangerous as unlimited energy and that uncontrolled arti-
ficial intelligence may be as dangerous as nuclear weap-
ons. The challenge is to make sure that this new source of

224   chapter 8

intelligence is used for good and not for bad, to increase
the well-being of people and for the benefit of humanity,
rather than to increase the profit of a few.

Some people jump to conclusions and fear that research
on artificial intelligence may one day lead to metallic mon-
sters that will rise to dominate us—electronic versions of
the creation of Dr. Frankenstein. I doubt whether that will
ever happen. But even today we have automatic systems
that make decisions for us—some of which may be trained
from data—in various applications from cars to trading.
I believe we have more reason to fear the poorly pro-
grammed or poorly trained software than we do to dread
the possibility of the dawn of super-intelligent machines.

Closing Remarks

We have big data, but tomorrow’s data will be bigger. Our
sensors are getting cheaper and hence being used more
widely and more precisely. Computers are getting bigger
too, in terms of their computing power. We still seem to be
far from the limits imposed by physics as researchers find
new technologies and materials, such as the graphene, that
promise to deliver more. New products can be designed
and produced much faster using 3D printing technology
and more of these products will need to be smart.

	 Where Do We Go from Here?    225

With more data and computation, our trained models
can get more and more intelligent. Current deep networks
can learn enough abstraction in some limited context to
recognize handwritten digits or a subset of objects, but
they are far from having the capability of our visual cortex
to recognize a scene—one deep network does not a brain
make. They can learn some linguistic abstraction from
large bodies of text, but we are far from any real under-
standing of it—enough, for example, to answer questions
about a short story. How our learning algorithms will scale
up is an open question. That is, can we train a model that is
as good as the visual cortex by adding more and more lay-
ers to a deep network and training it with more and more
data? Can we get a model to translate from one language
to another by having a very large model trained with a lot
of data? The answer should be yes, because our brains are
such models. But this scaling up may be increasingly dif-
ficult. Even though we are born with the specialized hard-
ware, it still takes years of observing our environment
before we utter our first sentence.

In vision, as we go from barcode to optical charac-
ter readers to face recognizers, we define a sequence of
increasingly complex tasks, each of which solves a need
and each of which is a marketable product in its own
time. More than scientific curiosity, it is this process of
capitalization that fuels research and development. As our

226   chapter 8

learning systems get more intelligent, they will find use in
increasingly smarter products and services.

In the last half century, we have seen that as com-
puters find new applications in our lives, they have also
changed our lives to make computation easier. Similarly,
as our devices get smarter, the environment in which we
live, and our lives in it, will change. Each age uses its cur-
rent technology, which defines an environment with its
constraints, and these propel new inventions and new
technologies. If we can go back two thousand years and
somehow give Romans the cell phone technology, I doubt
that it would greatly enhance their quality of life, when
they were still riding horses, that is, when the rest of
their lives did not match up. The world when we will need
human-level intelligence in machines will be a very differ-
ent world.

When will we reach that level of intelligence and how
much processing and training will be required are yet to
be seen. Currently machine learning seems to be the most
promising way to achieve it, so stay tuned.

Adversarial example
A slightly perturbed example that causes a big change at the output. Adver-
sarial examples are an indicator that the model’s response is very much special-
ized to the training examples, and that the model has not correctly generalized.

Anonymization
Removal or hiding of information such that the source cannot be uniquely
identified. It is not as straightforward as one would think.

Artificial intelligence
Programming computers to do things, which, if done by humans, would be
said to require “intelligence.” It is a human-centric and ambiguous term: call-
ing computers “artificially intelligent” is like calling driving “artificial running.”

Association rules
If-then rules associating two or more items in basket analysis. For example,

“People who buy diapers frequently also buy beer.”

Autoencoder network
A type of neural network that is trained to reconstruct its input at its output.
Because there are fewer intermediary hidden units than inputs, the network is
forced to learn a short, compressed representation at the hidden units, which
can be interpreted as a process of abstraction.

Backpropagation
A learning algorithm for artificial neural networks used for supervised learning,
where connection weights are iteratively updated to decrease the approxima-
tion error at the output units.

Bag of words
A method for document representation where we preselect a lexicon of N
words and we represent each document by a list of length N where element i
is 1 if word i exists in the document and is 0 otherwise.

GLOSSARY

228   Glossary

Basket analysis
A basket is a set of items purchased together (e.g., in a supermarket). Basket
analysis is finding items frequently occurring in the same basket. Such depen-
dencies between items are represented by association rules.

Bayes’ rule
One of the pillars of probability theory where for two or more random vari-
ables that are not independent, we write conditional probability in one direc-
tion in terms of the conditional probability in the other direction:

P(B|A) = P(A|B)P(B)/P(A).

It is used, for example, in diagnosis where we are given P(A|B) and B is the
cause of A. Calculating P(B|A) allows a diagnostics—that is, the calculation of
the probability of the cause B given the symptoms A.

Bayesian estimation
A method for parameter estimation where we use not only the sample, but also
the prior information about the unknown parameters given by a prior distribu-
tion. This is combined with the information in the data to calculate a posterior
distribution using Bayes’ rule.

Bayesian network
See graphical model.

Behavioral cloning
One way of doing imitation learning where we observe how a human is solving
the task step by step and each step is learned in a supervised manner; the robot
learns to copy the human behavior exactly—that is, what the correct action is
for each intermediate stage.

Bioinformatics
Computational methods, including those that use machine learning, for ana-
lyzing and processing biological data.

Biometrics
Recognition or authentication of people using their physiological character-
istics (e.g., face, fingerprint) and behavioral characteristics (e.g., signature,
gait).

	Gl ossary    229

Character recognition
Recognizing printed or handwritten text. In optical recognition, the input is
visual and is sensed by a camera or scanner. In pen-based recognition, the writ-
ing is done on a touch-sensitive surface and the input is a temporal sequence
of coordinates of the pen tip.

Class
A set of instances having the same identity. For example, ‘A’ and ‘A’ belong to
the same class. In machine learning, for each class we learn a discriminant from
the set of its examples.

Classification
Assignment of a given instance to one of a set of classes.

Cloud computing
A recent paradigm in computing where data and computation are not local but
handled in some remote off-site data center. Typically there are many such
data centers, and the tasks of different users are distributed over them in a way
invisible to the user. This was previously called grid computing.

Clustering
Grouping of similar instances into clusters. This is an unsupervised learning
method because the instances that form a cluster are found based on their
similarity to each other, as opposed to a classification task where the supervisor
assigns instances to classes by explicitly labeling them.

Connectionism
A neural network approach in cognitive science where mind is modeled as the
operation of a network of many simple processing units running in parallel.
Also known as parallel distributed processing.

Cyber-physical systems
Computational elements directly interacting with the physical world. Some
may be mobile. They may be organized as a network to handle the task in a
collaborative manner. Also known as embedded systems.

Data analysis
Computational methods for extracting information from large amounts of
data. Data mining uses machine learning and is more data-driven; OLAP is
more user-driven.

230   Glossary

Data mining
Machine learning and statistical methods for extracting information from
large amounts of data. For example, in basket analysis, by analyzing large num-
ber of transactions, we find association rules.

Data science
A recently proposed field in computer science and engineering composed of
machine learning, high performance computing, and social, ethical, and legal
aspects of data collection and analysis. Data science is proposed to handle in
a systematic way the “big data” problems that face us today in many different
scenarios.

Data warehouse
A subset of data selected, extracted, and organized for a specific data analysis
task. The original data may be very detailed and may lie in several different
operational databases. The warehouse merges and summarizes them. The
warehouse is read-only; it is used to get a high-level overview of the process
that underlies the data either through OLAP and visualization tools, or by
data mining software.

Database
Software for storing and processing digitally represented information
efficiently.

Decision tree
A hierarchical model composed of decision nodes and leaves. The decision tree
works fast, and it can be converted to a set of if-then rules, and as such allows
knowledge extraction.

Deep learning
Methods that are used to train models with several levels of abstraction from
the raw input to the output. For example, in visual recognition, the lowest
level is an image composed of pixels. In layers as we go up, a deep learner
combines them to form strokes and edges of different orientations, which can
then be combined to detect longer lines, arcs, corners, and junctions, which
in turn can be combined to form rectangles, circles, and so on. The units
of each layer may be thought of as a set of primitives at a different level of
abstraction.

	Gl ossary    231

Deep Q-Network
A deep neural network trained end to end with Q-learning.

Dimensionality reduction
Methods for decreasing the number of input attributes. In an application,
some of the inputs may not be informative, and some may correspond to dif-
ferent ways of giving the same information. Reducing the number of inputs
also reduces the complexity of the learned model and makes training easier.
See feature selection and feature extraction.

Discriminant
A rule that defines the conditions for an instance to be an element of a class
and as such separates them from instances of other classes.

Document categorization
Classification of text documents, generally based on the words that occur in
the text (e.g., using bag of words representation). For instance, news docu-
ments can be classified as politics, arts, sports, and so on; emails can be classi-
fied as spam versus not-spam.

Edge computing
Processing data at the “edge,” that is, where the data is collected, instead of
sending it to the cloud to be processed. It leads to fast response and decreased
network traffic. This is an idea similar to fog computing.

Embedded systems
See cyber-physical systems.

Face recognition
Recognizing people’s identities from their face images captured by a camera.

Feature extraction
As a method for dimensionality reduction, several original inputs are combined
to define new, more informative features.

Feature selection
A method that discards the uninformative features and keeps only those that
are informative; it is used for dimensionality reduction.

232   Glossary

Fog computing
A fog is like a cloud, but it is smaller and local. The cloud can be far; but the
machines that make up the fog are local, therefore they lead to faster response;
the idea is similar to edge computing.

Gating unit
A unit that opens or closes another connection depending on its input. It thus
allows selectively turning on/off parts of a neural network.

Generalization
How well a model trained on a training set performs on new data unseen dur-
ing training. This is at the core of machine learning. In an exam, a teacher asks
questions that are different from the exercises already solved while teaching
the course, and students’ performance is measured by their performance on
these new questions. A student who can solve only the questions that the
instructor has solved in class is not good enough.

Generative model
A model defined in such a way so as to represent the way we believe the data
has been generated. We think of hidden causes that generate the data and also
of higher-level hidden causes. Slippery roads may cause accidents, and rain
may have caused roads to be slippery.

Generative adversarial network
This is actually made up of two networks, a generator G and a discriminator D.
G generates a “fake” instance from a random input and D is trained to separate
such fakes from true examples. G is in turn trained to generate fakes that D will
classify as true, which will force D to get better at spotting fakes, which will in
turn cause G to be a better faker, and so on.

Graphical model
A model representing dependencies between probabilistic concepts. Each
node is a concept with a different truth degree and a connection between
nodes represents a conditional dependency. If I know that the rain causes my
grass to get wet, I define one node for rain and one node for wet grass, and I
put a directed connection from the rain node to the node for wet grass. Proba-
bilistic inference on such networks may be implemented as efficient graph
algorithms. Such a network is a visual representation and helps understand-
ing. Also known as a Bayesian network—one rule of inference used in such
networks is Bayes’ rule.

	Gl ossary    233

High-performance computing
To handle the big data problems we have today in reasonable time, we need
powerful computing systems, both for storage and calculation. The field of
high-performance computing includes work along these directions; one ap-
proach is cloud computing.

If-then rules
Decision rules written in the form of “IF antecedent THEN consequent.” The
antecedent is a logical condition and if holds true for the input, the action in
the consequent is carried out. In supervised learning, the consequent corre-
sponds to choosing a certain output. A rule base is composed of many if-then
rules. A model that can be written as a set of if-then rules is easy to understand
and hence rule bases allow knowledge extraction.

Ill-posed problem
A problem where the data is not sufficient to find a unique solution. Fitting a
model to data is an ill-posed problem, and we need to introduce inductive bias
to get a final model.

Imitation learning
In robotics, this means training a robot to imitate a human doing the task.

Induction
Learning a general model from particular examples, for example, learning the
general concept of a chair from all the chairs one sees.

Inductive bias
The set of assumptions that each machine learning algorithm makes, in addi-
tion to the data, to learn a model.

Information retrieval
Given a database of many records, we make a query and we want the records
relevant to be found. For example, given a database of news articles, we can
make a query using keywords.

Inverse reinforcement learning
As a method for imitation learning, the idea is to first an extract reward func-
tion by observing the way a human is solving a task; once such a reward func-
tion is extracted, we can use reinforcement learning proper.

234   Glossary

Knowledge extraction
In some applications, notably in data mining, after training a model, we would
like to be able to understand what the model has learned; this can be used
for validating the model by people who are experts in that application, and
it also helps to understand the process that generated the data. Some models
are “black box” in that they are not easy to understand; some models—for
example, linear models and decision trees—are interpretable and allow ex-
tracting knowledge from a trained model.

Latent semantic analysis
A learning method where the aim is to find a small set of hidden (latent)
variables that represent the dependencies in a large sample of observed data.
Such hidden variables may correspond to abstract (e.g., semantic) concepts.
For example, each news article can be said to include a number of “topics,”
and although this topic information is not given explicitly in a supervised way
in the data, we can learn them from data such that each topic is defined by
a particular set of words and each news article is defined by a particular set
of topics.

Model
A template formalizing the relationship between an input and an output. Its
structure is fixed but it also has parameters that are modifiable; the parameters
are adjusted so that the same model with different parameters can be trained
on different data to implement different relationships in different tasks.

Natural language processing
Computer methods used to process human language, also called computa-
tional linguistics.

Nearest-neighbor methods
Models where we interpret an instance in terms of the most similar training
instances. They use the most basic assumption: similar inputs have similar
outputs. They are also called instance-, memory-, or case-based methods.

Neural network
A model composed of a network of simple processing units called neurons and
connections between neurons called synapses. Each synapse has a direction
and a weight, and the weight defines the effect of the neuron before on the
neuron after.

	Gl ossary    235

Nonparametric methods
Statistical methods that do not make strong assumptions about the proper-
ties of the data. Hence they are more flexible, but they may need more data to
sufficiently constrain them.

Occam’s razor
A philosophical heuristic that advises us to prefer simple explanations to com-
plicated ones.

Online analytical processing (OLAP)
Data analysis software used to extract information from a data warehouse.
OLAP is user-driven, in the sense that the user thinks of some hypotheses
about the process and using OLAP tools checks whether the data supports
those hypotheses. Machine learning is more data-driven in the sense that au-
tomatic data analysis can find dependencies not previously thought by users.

Outlier detection
An outlier, anomaly, or novelty is an instance that is very different from other
instances in the sample. In certain applications such as fraud detection, we are
interested in such outliers that are the exceptions to the general rules.

Parallel distributed processing
A computational paradigm where the task is divided into smaller concurrent
tasks, each of which can be run on a different processor. By using more proces-
sors, the overall computation can be done much faster.

Parametric methods
Statistical methods that make strong assumptions about data. The advantage
is that if the assumption holds, they are very efficient in terms of computation
and data; the risk is that those assumptions do not always hold.

Pattern recognition
A pattern is a particular configuration of data; for example, ‘A’ is a composition
of three strokes. Pattern recognition is the detection of such patterns.

Perceptron
A perceptron is a type of a neural network organized into layers where each
layer receives connections from units in the previous layer and feeds its output
to the units of the layer that follow.

236   Glossary

Population
The set of all possible observable values for a random experiment, a sample is
a random subset of the population.

Posterior distribution
The distribution of possible values that an unknown parameter can take after
looking at the data. Bayes’ rule allows us to combine the prior distribution and
the data to calculate the posterior distribution.

Precision and recall
Measures used to evaluate an information retrieval system. Precision is the ratio
of the number of retrieved and relevant records to the number of retrieved
records, and recall is the ratio of the number of retrieved and relevant records
to the relevant records.

Prior distribution
The distribution of possible values that an unknown parameter can take before
looking at the data. For example, before estimating the average weight of high
school students, we may have a prior belief that it will be between 100 and 200
pounds. Such information is especially useful if we have little data.

Q-learning
A reinforcement learning method based on temporal difference learning, where
the goodness values of actions in states are stored in a table (or function),
frequently denoted by Q.

Ranking
This is a task somewhat similar to regression, but we care only whether the
outputs are in the correct order. For example, for two movies A and B, if the
user enjoyed A more than B, we want the score estimate to be higher for A than
for B. There are no absolute score values as we have in regression, but only a
constraint on their relative values.

Recurrent connection
A type of connection that involves a delay and acts as a short-term memory
helping the network to remember its past. The advantage is that the network’s
output depends not only on its current input but also on the inputs it has seen
in previous time steps.

	Gl ossary    237

Regression
Estimating a numeric value for a given instance. For example, estimating the
price of a used car given the attributes of the car is a regression problem.

Reinforcement learning
It is also known as learning with a critic. The agent takes a sequence of actions
and receives a reward/penalty only at the very end, with no feedback during
the intermediate actions. Using this limited information, the agent should
learn to generate the actions to maximize the reward in later trials. For ex-
ample, in chess, we do a set of moves, and at the very end, we win or lose the
game; so we need to figure out what the actions that led us to this result were
and correspondingly credit them.

Sample
A set of observed data. In statistics, we make a difference between a population
and a sample. Let us say we want to do a study on obesity in high school stu-
dents. The population is all the high school students, but we cannot possibly
observe the weights of all. Instead, we choose a random subset of, for example,
1,000 students and observe their weights. Those 1,000 values are our sample.
We analyze the sample to make inferences about the population. Any value we
calculate from the sample is a statistic. For example, the average of the weights
of the 1,000 students in the sample is a statistic and is an estimator for the
mean of the population.

Smart device
A device that has its sensed data represented digitally and is doing some com-
putation on this data. The device may be mobile and it may be online; that is,
it may have the ability to exchange data with other smart devices, computers,
or the cloud.

Speech recognition
Recognizing uttered sentences from acoustic information captured by a
microphone.

Supervised learning
A type of machine learning where the model learns to generate the correct
output for any input. The model is trained with data prepared by a supervisor
who can provide the desired output for a given input. Classification and regres-
sion are examples of supervised learning.

238   Glossary

Temporal difference learning
A set of methods for reinforcement learning where learning is done by backing
up the goodness of the current action to the one that immediately precedes it.
An example is the Q-learning algorithm.

Transfer learning
Using a model, completely or partially, trained on task A to be used in solving
task B. When used in neural networks, this corresponds to using some of the
layers of the network trained on A also in the network to be trained for B. This
can be done if A and B are similar tasks, and is especially useful if we have more
data for A than for B.

Validation
Testing the generalization performance of a trained model by testing it on data
unseen during training. Typically in machine learning, we leave some of our
data out as validation data, and after training we test it on this left out data.
This validation accuracy is an estimator for how well the model is expected to
perform when used later on in real life.

Web scraping
Software that automatically surfs the web and extracts information from web
pages.

NOTES

Preface
1.  “Go Master Lee says he quits unable to win over AI Go players.” Yonhap
News Agency, November 27, 2019. https://en.yna.co.kr/view/AEN2019
1127004800315 (accessed January 29, 2020).

Chapter 1
1.  These use the ASCII code devised for the English alphabet and punctuation.
The character-encoding schemes we use today cover the different alphabets of
different languages.
2.  In building portable electronic devices, such as notebook computers, music
players, and smartphones, the development of rechargeable lithium-ion bat-
teries was crucial. The 2019 Nobel Prize in chemistry went to three researchers
who made this technology possible.
3.  It is not the computing power, storage capacity, or connectivity that by
themselves produce added value, just as a higher population does not neces-
sarily imply a larger workforce. The enormous number of smartphones in the
developing countries does not translate to wealth.
4.  A computer program is composed of an algorithm for the task and data
structures for the digital representation of the processed information. The
title of a seminal book on computer programming is just that: Algorithms +
Data Structures = Programs (Wirth 1976).
5.  Early scientists believed that the existence of rules that explain the physi-
cal world is a sign of an ordered universe, which could only be due to a god.
Observing nature and trying to fit rules to natural phenomena has an old his-
tory, starting in ancient Mesopotamia. Early on, pseudoscience could not be
separated from science. In hindsight, the fact that the ancient people believed
in astrology is not surprising: If there are regularities and rules about the
movement of the sun and the moon, which can be used to predict eclipses
for example, positing the existence of regularities and rules about the move-
ment of human beings, which seem so petty in comparison, does not sound
far-fetched.

Chapter 2
1.  See https://en.wikipedia.org/wiki/Depreciation.

https://en.yna.co.kr/view/AEN20191127004800315
https://en.yna.co.kr/view/AEN20191127004800315
https://en.wikipedia.org/wiki/Depreciation

240   Notes

2.  Such smoothness assumptions are also frequently used in image processing.
For example, when scientists first captured the image of a black hole in 2019,
they used the Event Horizon Telescope, which is actually a combination of a
number of telescopes around the world each capable of recording only a small
part. Smoothness constraints are used to put those pieces together to get the
complete image, just like in the illusion of the Kanizsa triangle where we can
imagine a complete large triangle even though what we actually see are just
small pieces of it.
3.  For an excellent history of artificial intelligence, see Nilsson 2009.
4.  See Sandel 2012 for some real-life scenarios where decision making based
on expected value, or expected utility, may not be the best way. Pascal’s wager
is another example of the application of expected value calculation in an area
where it should not be applied.

Chapter 3
1.  Here, we are talking about optical character recognition where the input is
an image; there is also pen-based character recognition where the writing is
done on a touch-sensitive pad. In such a case, the input is not an image but a
sequence of the (x,y) coordinates of the stylus tip, while the character is writ-
ten on the touch-sensitive surface.
2.  Let us say F represents the flu and N represents a runny nose. Using Bayes’
rule, we can write the probability that a person has the flu given that we know
they have a runny nose:

P(F|N) = P(N|F)P(F)/P(N),

Here, P(N|F) is the conditional probability in the other direction, namely,
that a patient has a runny nose given that they are known to have the flu. P(F)
is the probability that a patient has the flu, regardless of whether they have a
runny nose or not, and P(N) is the probability that a patient has a runny nose,
regardless of whether they have the flu or not.
3.  It is interesting that in many science fiction movies, though the robots
may be very advanced in terms of vision, speech recognition, and autonomous
movement, they still continue to speak in an emotionless, “robotic” voice.
4.  This is due to Condorcet’s Jury Theorem, which states that in a group that
decides by majority voting, if each voter has an independent probability p of
voting for the correct decision, for any p > ½ (better than randomly guessing),
the probability that the majority vote is correct approaches 1 as the number
of voters increase. This is why democracy is better than monarchy (Marquis de

	N otes    241

Condorcet supported the French Revolution, though he was later treated as a
traitor and sent to prison where he died), but only if the voters can form their
own opinions independently, and that is where concepts such as freedom of
press and freedom of expression come into play.

Another implication is the advantage of countries that are tolerant to
differences, or are open to individuals from different backgrounds, such as
immigrants, knowing that differences are a source of diversity and hence of
new ideas. Historically speaking, we see that creativity, artistic or scientific, is
highest in either countries that were trading nations continuously interacting
with different cultures, or countries that were welcoming to immigrants. It is
always said that creativity requires being able to “think outside the box”; the
more different people are, the less their boxes overlap, and meeting different
people enlarges one’s box.
5.  Bayesian estimation uses Bayes’ rule in probability theory (which we saw
before) named after Thomas Bayes (1702–1761) who was a Presbyterian min-
ister. The assumption of a prior that exists before and underlies the observable
data should have come naturally with the job.

Chapter 4
1.  Check thispersondoesnotexist.com for example face images generated by
a GAN.

Chapter 7
1.  Quoted in “Human Rights and Technology” discussion paper, Australian
Human Rights Commission, December 2019, 75, https://www.humanrights

.gov.au/our-work/rights-and-freedoms/publications/human-rights-and-technology
-discussion-paper-2019.

Chapter 8
1.  The speed of light is approximately 300,000 km/sec, so it takes at least
3.33 milliseconds to traverse 1,000 km—distance to a data center. This is not
actually such a small number with electronic devices. The connection is never
direct and there are always delays due to intermediate routing devices; and
remember that to get a response, we need to send a query first, so we need to
double the time.
2.  For more, see Frontiers in Massive Data Analysis (Washington, DC: National
Academies Press, 2013).

http://thispersondoesnotexist.com
https://www.humanrights.gov.au/our-work/rights-and-freedoms/publications/human-rights-and-technology-discussion-paper-2019
https://www.humanrights.gov.au/our-work/rights-and-freedoms/publications/human-rights-and-technology-discussion-paper-2019
https://www.humanrights.gov.au/our-work/rights-and-freedoms/publications/human-rights-and-technology-discussion-paper-2019

REFERENCES

Bakshy, E., S. Messing, and L. A. Adamic. 2015. “Exposure to Ideologically Di-
verse News and Opinion on Facebook.” Science 348:1130–1132.

Blei, D. 2012. “Probabilistic Topic Models.” Communications of the ACM
55:77–84.

Bohannon, J. 2015. “Fears of an AI Pioneer.” Science 349:252.

Börner, K. 2015. Atlas of Knowledge: Anyone Can Map. Cambridge, MA: MIT Press.

Brown, N., and T. Sandholm. 2019. “Superhuman AI for Multiplayer Poker.”
Science 365:885–890.

Buchanan, B. G., and E. H. Shortliffe. 1984. Rule-Based Expert Systems: The MY-
CIN Experiments of the Stanford Heuristic Programming Project. Reading, MA:
Addison Wesley.

Eisenstein, J. 2019. Introduction to Natural Language Processing. Cambridge,
MA: MIT Press.

Favaretto, M., E. De Clercq, and B. S. Elger. 2019. “Big Data and Discrimina-
tion: Perils, Promises and Solutions: A Systematic Review.” Journal of Big Data
6 (12): 1–27.

Feldman, J. A., and D. H. Ballard. 1982. “Connectionist Models and Their Prop-
erties.” Cognitive Science 6:205–254.

Fukushima, K. 1980. “Neocognitron: A Self-Organizing Neural Network Model
for a Mechanism of Pattern Recognition Unaffected by Shift in Position.” Bio-
logical Cybernetics 36:93–202.

Gilpin, L. H., D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal. 2018.
“Explaining Explanations: An Overview of Interpretation of Machine Learning.”
ArXiv preprint ArXiv:1806.00069.

Goodfellow, I., Y. Bengio, and A. Courville. 2016. Deep Learning. Cambridge,
MA: MIT Press.

Goodfellow, I. J. , J. Pouget-Abadie , B. Xu, D. Warde-Farley, S. Ozair, A. Cour-
ville, and Y. Bengio. 2014. “Generative Adversarial Networks.” ArXiv preprint
ArXiv:1406.2661.

244   References

Han, J., and M. Kamber. 2011. Data Mining: Concepts and Techniques. 3rd ed.
San Francisco, CA: Morgan Kaufmann.

Hebb, D. O. 1949. The Organization of Behavior. New York: Wiley & Sons.

Hirschberg, J., and C. D. Manning. 2015. “Advances in Natural Language Proc-
essing.” Science 349:261–266.

Hochreiter, S., and J. Schmidhuber. 1997. “Long Short-Term Memory.” Neural
Computation 9:1735–1780.

Horvitz, E., and D. Mulligan. 2015. “Data, Privacy, and the Greater Good.” Sci-
ence 349:253–255.

Hubel, D. H. 1995 Eye, Brain, and Vision. 2nd ed. New York: W. H. Freeman.
http://hubel.med.harvard.edu/index.html.

Jordan, M. I., and T. M. Mitchell. 2015. “Machine Learning: Trends, Perspec-
tives, and Prospects.” Science 349:255–260.

Koller, D., and N. Friedman. 2009. Probabilistic Graphical Models. Cambridge,
MA: MIT Press.

Lazic, N., T. Lu, C. Boutilier, M. Ryu, E. Wong, B. Roy, and G. Imwalle. 2018.
“Data Center Cooling using Model-Predictive Control.” In Proceedings of the 32nd
Conference on Neural Information Processing Systems, 3818–3827.

LeCun, Y., Y. Bengio, and G. Hinton. 2015. “Deep Learning.” Nature 521:436–444.

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R.E. Howard, W. Hubbard, and
L. D. Jackel. 1989. “Backpropagation Applied to Handwritten Zip Code Recog-
nition.” Neural Computation 1:541–551.

Li, Y. 2019. “Reinforcement Learning Applications.” ArXiv preprint
ArXiv:1908.06973.

Liu, T.-Y. 2011. Learning to Rank for Information Retrieval. Heidelberg: Springer.

Marr, D. 1982. Vision: A Computational Investigation into the Human Representa-
tion and Processing of Visual Information. Cambridge, MA: MIT Press.

McCulloch, W., and W. Pitts. 1943. “A Logical Calculus of the Ideas Immanent
in Nervous Activity.” Bulletin of Mathematical Biophysics 5:115–133.

Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. “Efficient Estimation of
Word Representations in Vector Space.” ArXiv preprint ArXiv:1301.3781.

http://hubel.med.harvard.edu/index.html

	 References    245

Minsky, M. L., and S. A. Papert. 1969. Perceptrons. Cambridge, MA: MIT Press.

Mitchell, T. 1997. Machine Learning. New York: McGraw Hill.

Mnih, V., K. Kavukçuoğlu, D. Silver, A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, et al. 2015. “Human-Level Control through Deep Reinforcement
Learning.” Nature 518:529–533.

Moravcik, M., M. Schmid, N. Burch, V. Lisý, D. Morrill, N. Bard, T. Davis, et al.
2017. “DeepStack: Expert-Level Artificial Intelligence in Heads-Up No-Limit
Poker.” Science 356:508–513.

Nilsson, N. J. 2009. The Quest for Artificial Intelligence: History of Ideas and
Achievements. Cambridge, UK: Cambridge University Press.

Orbanz, P., and Y. W. Teh. 2010. “Bayesian Nonparametric Models.” In Encyclo-
pedia of Machine Learning. New York: Springer.

Rosenblatt, F. 1962. Principles of Neurodynamics. Washington, DC: Spartan
Books.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986. “Learning Representa-
tions by Back-Propagating Errors.” Nature 323:533–536.

Rumelhart, D. E., and J. L. McClelland and the PDP Research Group. 1986.
Parallel Distributed Processing: Explorations in the Microstructure of Cognition.
Cambridge, MA: MIT Press.

Russell, S., and P. Norvig. 2020. Artificial Intelligence: A Modern Approach. 4th
ed. Hoboken, NJ: Pearson.

Sandel, M. 2012. What Money Can’t Buy: The Moral Limits of Markets. New York:
Farrar, Straus and Giroux.

Schmidhuber, J. 2015. “Deep Learning in Neural Networks: An Overview.” Neu-
ral Networks 61:85–117.

Schwartz, R., J. Dodge, N. A. Smith, and O. Etzioni. 2019. “Green AI.” ArXiv
preprint ArXiv:1907.10597.

Silver, D., A. Huang, C. J. Maddison, A. Guez. L. Sifre, G. van den Driessche,
J. Schrittwieser, et al. 2016. “Mastering the Game of Go with Deep Neural
Networks and Tree Search.” Nature 529:484–489.

Silver, D., T. Hubert, J. Schrittwieser, I Antonoglou, M. Lai, A. Guez, M. Lanctot,
et al. 2018. “A General Reinforcement Learning Algorithm that Masters Chess,
Shogi, and Go through Self-Play.” Science 362:1140–1144.

246   References

Silver, D., J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.
Hubert, et al. 2017. “Mastering the Game of Go without Human Knowledge.”
Nature 550:354–359.

Sutton, R. S., and A. G. Barto. 2018. Reinforcement Learning: An Introduction.
2nd ed. Cambridge, MA: MIT Press.

Sweeney, L. 2002. “K-Anonymity: A Model for Protecting Privacy.” International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10:557–570.

Tesauro, G. 1995. “Temporal Difference Learning and TD-Gammon.” Commu-
nications of the ACM 38:58–68.

Thrun, S., W. Burgard, and D. Fox. 2005. Probabilistic Robotics. Cambridge, MA:
MIT Press.

Valiant, L. 1984. “A Theory of the Learnable.” Communications of the ACM
27:1134–1142.

Vapnik, V. 1998. Statistical Learning Theory. New York: Wiley.

Vinyals, O., I. Babuschkin, W. M. Czarbnecki, M. Mathieu, A. Dudzik, J. Chung,
D. H. Choi, et al. 2019. “Grandmaster Level in StarCraft II Using Multi-Agent
Reinforcement Learning.” Nature 575:350–354.

Vinyals, O., A. Toshev, S. Bengio, and D. Erhan. 2014. “Show and Tell: A Neural
Image Caption Generator.” Arxiv preprint ArXiv:1411.4555.

Wachter, S., B. Mittelstadt, and C. Russell. 2018. “Counterfactual Explanations
without Opening the Black Box: Automated Decisions and the GDPR.” Harvard
Journal of Law and Technology, 31:841–887.

Winston, P. H. 1975. “Learning Structural Descriptions from Examples.” In
The Psychology of Computer Vision, ed. P. H. Winston, 157–209. New York:
McGraw-Hill.

Wirth, N. 1976. Algorithms + Data Structures = Programs. Upper Saddle River,
NJ: Prentice Hall.

Zadeh, L. A. 1965. “Fuzzy Sets.” Information and Control 8:338–353.

Zoph, B., and Q. V. Le. 2016. “Neural Architecture Search with Reinforcement
Learning.” ArXiv preprint ArXiv:1611.01578.

FURTHER READING

Duda, R. O., P. E. Hart, and D. G. Stork. 2001. Pattern Classification. 2nd ed.
New York: Wiley.

Feldman, J. A. 2006. From Molecule to Metaphor: A Neural Theory of Language.
Cambridge, MA: MIT Press.

Hastie, T., R. Tibshirani, and J. Friedman. 2011. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. New York: Springer.

Kohonen, T. 1995. Self-Organizing Maps. Berlin: Springer.

Murphy, K. 2012. Machine Learning: A Probabilistic Perspective. Cambridge, MA:
MIT Press.

Pearl, J. 2000. Causality: Models, Reasoning, and Inference. Cambridge, UK: Cam-
bridge University Press.

Witten, I. H., and E. Frank. 2005. Data Mining: Practical Machine Learning Tools
and Techniques. 2nd ed. San Francisco, CA: Morgan Kaufmann.

INDEX

Accountability (in decision making),
197

Activation (neural), 106
Active learning, 96–99
Activity recognition, 88
Adamic, L. A., 193
Adversarial examples, 194
Affective computing, 83
Agents, 161
Algorithm, 16, 239
Alignment (in bioinformatics), 146
Alphabets, 73, 85, 239
AlphaGo (program), ix, xvi, 174, 212
AlphaGo Zero (program), 175
AlphaStar (program), 176
AlphaZero (program), 175
Anna Karenina (novel), 89
Anomaly detection, 89
Anonymization, 189–190
Arcade games, 173
Artificial intelligence (AI), 18–25, 32,

61, 98, 106, 195, 214, 222–224
ASCII code, 239
Association rules, 152
Autoencoders, 130–135

Backgammon, 172
Backpropagation, 112, 121
Bag of words, 86–87, 146, 148, 156
Bakshy, L., 193
Ballard, D. H., 116
Barcodes, 71–72, 225
Barto, A. G., 162
Basket analysis, 218

Batch learning, 111
Bayes, T., 241
Bayes’ rule, 80, 240
Bayesian estimation, 101
Bayesian networks, 80
Behavioral cloning, 181
Bellman equation, 168
Bengio, Y., 128
Biased data, 191–193
Bioinformatics, 146, 149
Biometrics, 83, 88
Bit, 2
Blei, D., 156
Bohannon, J., 223
Börner, K., 219
Brown, N., 176
Buchanan, B. G., 61
Burgard, W., 172

Captcha, 74
Caption generation, 137
Case-based reasoning, 76
Causal model, 78
Central processing unit (CPU), 17,

21, 201
Classification, 57

accuracy/error, 66
Click logs, 100
Cloud computing, 203, 212
Clustering, 143–152

hierarchical, 149
spectral, 148

Cobol, 202
Compression, 54, 144–146

250   Index

Computational learning theory, 99
Computer networks, 5–7
Confidence interval, 97
Connectionist models, 116–119
Convolutional neural network, 125,

174
Counterfactuals, 195
Credit assignment, 163
Credit scoring, 54–60
Customers

customer behavior, 12, 152
customer relationship

management (CRM), 144
customer segment, 40
customer segmentation, 144

Cyber-physical systems, 213

Data, 3
Data centers, 212, 215
Data mining, 14, 216–220
Data privacy and security, 187–

191
Data science, 220–222
Data visualization, 219
Data warehouses, 218
Databases, 3
Dataquake, 11
De Clercq, E., 184
Decision trees, 94–96
Deep Blue, ix
Deep learning, 127–130, 174, 225
Deep Q-Network, 173
DeepStack (program), 176
Diagnostics, 78
Differential privacy, 190
Dimensionality reduction, 90–93,

125
Discriminant, 32, 57
Document categorization, 85, 156

Document clustering, 146
Drones, 184, 197, 210

Edge computing, 214
Eisenstein, J., 85
Elger, B. S., 184
Email, 6, 17, 85
Embedded systems, 213
End-to-end learning, 135–138, 174
Energy-efficient computing, 215–

216
Error function, 110
Estimation, 32

k-nearest neighbor, 76
nonparametric, 75, 96, 103
parametric, 74
semi-parametric, 75, 144, 147

Evolution, 18, 150
Expected values, 62–65, 166
Expert systems, 61–62
Explainable artificial intelligence

(XAI), 195
Exploratory data analysis, 147, 218

Face recognition, 26–27, 82
Fairness (in decision making), 192
False alarm rate, 66
False positive/negative, 64
Favaretto, M., 184
Feature extraction, 92, 125
Feature selection, 91
Federated learning, 190
Feedback, 41, 159, 161–163
Feldman, J. A., 116
Fibonacci sequence, 51
Fifth Generation Computer Systems

Project, 61
Fingerprint recognition, 83, 88
Flying, 24–25, 105–106, 210

	 Index    251

Fog computing, 214
Fonts, 72–73, 77
Forgery, 83, 139
Fortran, 202
Fox, D., 172
Fraud detection, 89
Friedman, N., 80
Frisch, M., 65
Fukushima, K., 125
Fuzzy logic, 62

Game playing, 27, 137, 159, 172–
177, 223

Gaussian curve, 221
Generalization, 30, 47–51
Generative adversarial networks,

138–141
Generative models, 76, 152–158
Gilpin, L., 195
Go (game), ix, 33, 174
Goodfellow, I., 128, 138
GPS, 209
Grandmother cell theory, 117
Graphical models, 80
Graphical processing unit (GPU),

212
Graphical user interfaces, 4
Grid computing, 204

Han, J., 216
Hebb, D. O., 109
Hebbian learning, 109
Hidden factors, 76, 153
Hidden units, 123, 131
Hierarchical clustering, 149
Hierarchical cone, 127
Hierarchical representations, 121
High-performance computation,

210–214

Hinton, G. E., 112, 128
Hirschberg, J., 85
Hit rate, 66
Hochreiter, S., 115
Homo Faber (novel), 65
Homomorphic encryption, 190
Horvitz, E., 188
Hubel, D. H., 124
Hyperparameters, 53, 76, 174, 178

If-then rules, 58, 60–61, 94–95, 195
Ill-posed problem, 49
Imitation learning, 180
Induction, 30
Inductive bias, 51, 88
Inference, 32
Inference engine, 61
Information retrieval, 67
Internal reward, 163
Internet, 6
Internet of Things (IoT), 9
Interval estimation, 37, 54, 97–98
Invariance, 77–78, 132
Inverse reinforcement learning,

181

Jordan, M. I., 201

Kamber, M., 216
Kanizsa triangle, 49
Kanizsa, G., 49
K-armed bandit, 163
Kasparov, G., ix
Kernel function, 148
k-nearest neighbor estimation, 76,

94
Knowledge base, 61
Knowledge discovery in databases,

32

252   Index

Knowledge extraction, 60, 219
Koller, D., 80

Language models, 81, 85–87, 114,
133, 205, 225

Latent factors, 76
Latent semantic indexing, 156
Lazic, N., 180
Le, Q. V., 178
Learning

online, batch, minibatch, 111
reinforcement, 159–181
supervised, 45
unsupervised, 143–158

LeCun, Y., 33, 125, 128
LeNet (program), 33
Levels of analysis, 22–24, 105
Li, Y., 178
LIDAR, 209
Linear discriminant analysis, 92
Linear model, 41–44, 56, 58, 96,

107, 111, 195
Lisp, 61
Liu, T.-Y., 100
Long short-term memory units,

115

Machine reading, 206
Machine translation, 87, 135, 205
Manning, C. D., 85
Markov chain Monte Carlo

sampling, 102
Marr, D., 22
Matrix decomposition, 154
McClelland, J. L., 116
McCulloch, W., 106
Medical diagnosis, 63, 78
Memorization, 47
Messing, S., 193

Microprocessor, 4, 119–120, 201–
202

Mikolov, T., 133
Minibatch learning, 111
Minsky, M. L., 111
Mitchell, T. M., 51, 201
Mittelstadt, B., 197
Mnih, V., 137, 173
Mobile computing, 7
Model

black box vs. interpretable, 195
causal, 78
combination, 87
fitting, 52
generative, 76
interpretability, 193
linear, 41
mixture, 144, 147
multi-view, 88
quadratic, 53
selection, 41, 74–76

Moravcik, M., 176
Mulligan, D., 188
Multilayer perceptrons, 107
Multimedia, 15, 88
Multiple instruction, multiple data

(MIMD) machines, 119–120
Music, 4, 6, 9, 49, 193, 204, 205,

239
Mutation, 20, 150
MYCIN (program), 61

Natural language processing, 85,
116, 133–136, 152, 205, 225

Near-miss instance, 98
Nearest-neighbor methods, 76,

94
Neocognitron, 125
Neural architecture search, 178

	 Index    253

Neural instruction, multiple data
(NIMD) machines, 120

Neural networks, 21, 32, 105–141
convolutional, 125
deep, 127–130
recurrent, 113

NeuroGammon (program), 172
Neurons, 21–23, 106–123
Nilsson, N. J., 240
Nonparametric methods, 75, 94, 96,

103, 221
Norvig, P., 223
Novelty detection, 90

Object-oriented programming, 202
Occam’s razor, 52, 103
Online analytical processing, 218
Online connectivity, 6
Online learning, 111
Ontologies, 133
Optical character recognition (OCR),

33, 72, 77, 147
Orbanz, P., 103
Outlier detection, 89, 144

Papert, S. A., 111
Parallel distributed processing

(PDP) models, 116–119
Parallel processing, 21, 119–121
Pascal’s wager, 240
Pattern recognition, 15, 25, 71–103,

225
PDP Research Group, 116
Pen-based character recognition,

240
Perceptrons, 106, 111
Personal computer, 4, 202
Phylogeny, 149
Pitts, W., 106

Pluribus (program), 176
Population, 32, 45
Posterior distribution, 101
Precision, 67
Principal component analysis, 92
Prior distribution, 101
Privacy (of data), 187–191
Privacy-preserving learning, 190
Probability, 37
Probably approximately correct

learning, 99
Processors, 4, 21, 33, 119–121, 129,

201–203, 211–213
Prolog, 61

Q-learning, 171
QR codes, 71

Random forest, 96
Ranking, 99–101
Recall, 67
Recommendation systems, 99, 152–

158, 178
Recurrent neural networks, 113–

116
Regression, 46, 110
Regularization, 48, 73, 103, 128,

143–145
Reinforcement learning, 159–181
Reject decision, 65
Representation

binary, 2
hidden, 130–135
hierarchical, 121–126
input, 36
local vs. distributed, 119
numbers, 23

Resampling, 97
Reverse engineering, 24

254   Index

Reward function, 162
Risk, 56–60, 63, 66, 187
Robotics, 161, 168, 180, 210
Rosenblatt, F., 106
Rumelhart, D. E., 112, 116
Russell, C., 197
Russell, S., 223

Safety (in decision making), 197
Sample, 32, 38, 45
Sandel, M., 240
Sandholm, T., 176
Sanitization, 189
Schmidhuber, J., 115, 128
Schwartz, R., 215
Se-dol, L., ix, xvi
Search engines, 100, 206
Security (of data), 83, 187–191
Self-driving car, 30, 172, 208–210
Semi-parametric methods, 75, 144,

147
Sensitivity, 67
Sentiment analysis, 86
Short-term memory, 113
Shortliffe, E. H., 61
Signature recognition, 83
Silver, D., 174, 175
Single instruction, multiple data

(SIMD) machines, 119–120
Smart cars, 208
Smart devices, 9, 204
Smartphone, 7, 205
Social media, 10
Spam filtering, 17, 85
Specificity, 67
Spectral clustering, 148
Speech recognition, 84, 114, 147,

213, 240
Spoofing, 83

Statistics, 37
Storage, 3, 11, 111, 187, 203, 210–

213, 215, 222–223
Streaming data, 111, 204–205, 208
Supervised learning, 45
Support vector machines, 148
Sutton, R. S., 162
Sweeney, L., 189
Synapses, 22, 25, 106–107

TD-Gammon (program), 33, 172
Teh, Y. W., 103
Template matching, 72
Temporal difference (TD) learning,

168–172
Tesauro, G., 33
Thrun, S., 172
Tolstoy, L., 89
Training sets, 47–48, 74–75, 94, 96,

98, 100, 110, 138–140, 150, 163,
191–192, 194, 197

Transfer learning, 137–138
Transparency (in decision making),

189
Trending topics, 86
Trolley problems, 198
True positive/negative, 64

Ubiquitous computing, 9
Unsupervised learning, 143–158

Valiant, L., 99
Validation, 194–195
Vapnik, V., 149
Variational approximation, 102
Very large-scale integration (VLSI),

33
Video, 6, 15, 83–84, 152, 204, 206,

208, 212, 214, 221

	 Index    255

Vinyals, O., 137, 177
Vision, 21, 124, 127, 130, 209, 225,

240,
Visual cortex, 124
Visual illusions, 49

Wachter, S., 197
Wearable computing, 205
Web scraping, 206
Wiesel, T. N., 124
Williams, R. J., 112
Winston, P. H., 99
Wirth, N., 239
Word2vec network, 133–135
World wide web, 6
Wrapper approach, 92

XOR problem, 112

Zadeh, L. A., 62
Zoph, B., 178

The MIT Press Essential Knowledge Series

AI Ethics, Mark Coeckelbergh
Algorithms, Panos Louridas
Anticorruption, Robert I. Rotberg
Annotation, Remi H. Kalir and Antero Garcia
Auctions, Timothy P. Hubbard and Harry J. Paarsch
Behavioral Insights, Michael Hallsworth and Elspeth Kirkman
The Book, Amaranth Borsuk
Carbon Capture, Howard J. Herzog
Citizenship, Dimitry Kochenov
Cloud Computing, Nayan B. Ruparelia
Collaborative Society, Dariusz Jemielniak and Aleksandra Przegalinska
Computational Thinking, Peter J. Denning and Matti Tedre
Computing: A Concise History, Paul E. Ceruzzi
The Conscious Mind, Zoltan E. Torey
Contraception: A Concise History, Donna J. Drucker
Critical Thinking, Jonathan Haber
Crowdsourcing, Daren C. Brabham
Cybersecurity, Duane Wilson
Cynicism, Ansgar Allen
Data Science, John D. Kelleher and Brendan Tierney
Death and Dying, Nicole Piemonte and Shawn Abreu
Deconstruction, David J. Gunkel
Deep Learning, John D. Kelleher
Extraterrestrials, Wade Roush
Extremism, J. M. Berger
Fake Photos, Hany Farid
fMRI, Peter A. Bandettini
Food, Fabio Parasecoli
Free Will, Mark Balaguer
The Future, Nick Montfort
GPS, Paul E. Ceruzzi
Haptics, Lynette A. Jones
Hate Speech, Caitlin Ring Carlson
Information and Society, Michael Buckland
Information and the Modern Corporation, James W. Cortada
Intellectual Property Strategy, John Palfrey
The Internet of Things, revised and updated edition, Samuel Greengard

Irony and Sarcasm, Roger Kreuz
Ketamine, Bita Moghaddam
Machine Learning, revised and updated edition, Ethem Alpaydın
Machine Translation, Thierry Poibeau
Macroeconomics, Felipe Larraín B.
Memes in Digital Culture, Limor Shifman
Metadata, Jeffrey Pomerantz
The Mind–Body Problem, Jonathan Westphal
MOOCs, Jonathan Haber
Neuroplasticity, Moheb Costandi
Nihilism, Nolen Gertz
Open Access, Peter Suber
Paradox, Margaret Cuonzo
Phenomenology, Chad Engelland
Post-Truth, Lee McIntyre
Quantum Entanglement, Jed Brody
Recommendation Engines, Michael Schrage
Recycling, Finn Arne Jørgensen
Robots, John Jordan
School Choice, David R. Garcia
Science Fiction, Sherryl Vint
Self-Tracking, Gina Neff and Dawn Nafus
Sexual Consent, Milena Popova
Smart Cities, Germaine R. Halegoua
Spaceflight: A Concise History, Michael J. Neufeld
Spatial Computing, Shashi Shekhar and Pamela Vold
Sustainability, Kent E. Portney
Synesthesia, Richard E. Cytowic
The Technological Singularity, Murray Shanahan
3D Printing, John Jordan
Understanding Beliefs, Nils J. Nilsson
Virtual Reality, Samuel Greengard
Visual Culture, Alexis L. Boylan
Waves, Frederic Raichlen

ETHEM ALPAYDIN is Professor in the Department of Computer Engineering at
Özyeğin University, and a member of the Science Academy Society, Istanbul.
He is the author of the widely used textbook Introduction to Machine Learning
(MIT Press), now in its fourth edition.

	Contents
	Series Foreword
	Preface
	1: Why We Are Interested in Machine Learning
	The Power of the Digital
	Computers Store Data
	Computers Exchange Data
	Mobile Computing
	Social Data
	All That Data: The Dataquake
	Learning versus Programming
	Artificial Intelligence
	Understanding the Brain
	Pattern Recognition
	What We Talk about When We Talk about Learning
	History

	2: Machine Learning, Statistics, and Data Analytics
	Learning to Estimate the Price of a Used Car
	Randomness and Probability
	Learning a General Model
	Model Selection
	Supervised Learning
	Learning a Sequence
	Credit Scoring
	Expert Systems
	Expected Values

	3: Pattern Recognition
	Learning to Read
	Matching Model Granularity
	Generative Models
	Face Recognition
	Speech Recognition
	Natural Language Processing and Translation
	Combining Multiple Models
	Outlier Detection
	Dimensionality Reduction
	Decision Trees
	Active Learning
	Learning to Rank
	Bayesian Methods

	4: Neural Networks and
Deep Learning
	Artificial Neural Networks
	Neural Network Learning Algorithms
	What a Perceptron Can and Cannot Do
	Recurrent Networks for Learning Time
	Connectionist Models in Cognitive Science
	Neural Networks as a Paradigm for Parallel Processing
	Hierarchical Representations in Multiple Layers
	Deep Learning
	Learning Hidden Representations
	End-­to-­End Learning
	Generative Adversarial Networks

	5: Learning Clusters and Recommendations
	Finding Groups in Data
	Recommendation Systems

	6: Learning to Take Action
	Reinforcement Learning
	K-­Armed Bandit
	Temporal Difference Learning
	Learning to Play Games
	Reinforcement Learning in Real Life

	7: Challenges and Risks
	The Other Side of Machine Learning
	Data Privacy and Security
	Biased Data
	Model Interpretability
	Ethical, Legal, and Other Social Aspects

	8: Where Do We Go from Here?
	Make Them Smart, Make Them Learn
	High-­Performance Computation
	How Green Is My AI?
	Data Mining
	Data Science
	Machine Learning, Artificial Intelligence, and the Future
	Closing Remarks

	Glossary
	Notes
	Preface
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 7
	Chapter 8

	References
	Further Reading
	Index

