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SERIES FOREWORD

The MIT Press Essential Knowledge series offers accessible, 
concise, beautifully produced pocket-size books on topics 
of current interest. Written by leading thinkers, the books 
in this series deliver expert overviews of subjects that 
range from the cultural and the historical to the scientific 
and the technical.

In today’s era of instant information gratification, we 
have ready access to opinions, rationalizations, and super-
ficial descriptions. Much harder to come by is the founda-
tional knowledge that informs a principled understanding 
of the world. Essential Knowledge books fill that need. 
Synthesizing specialized subject matter for nonspecialists 
and engaging critical topics through fundamentals, each 
of these compact volumes offers readers a point of access 
to complex ideas.





PREFACE

In November 2019, South Korean Go master Lee Se-dol 
announced that, after a career of twenty-four years, he 
was retiring from professional Go competitions. In 2016, 
he had played a five-game series against a computer pro-
gram named AlphaGo, which he lost 1 to 4. Since then, 
later versions of AlphaGo had gotten even better, so much 
so that when announcing his retirement, Se-dol said that, 

“With the debut of AI in Go games, I’ve realized that I’m 
not at the top even if I become the number one through 
frantic efforts. Even if I become the number one, there is 
an entity that cannot be defeated.”1

The ancient strategy game Go had long been believed 
to be beyond the capability of AI. In 1997, when the chess-
playing program Deep Blue defeated the reigning world 
champion Garry Kasparov, researchers believed that it 
would take another generation for the same to happen 
with Go. While the chess board is 8 × 8, the Go board 
is 19 × 19—a larger board meaning so many more pos-
sible positionings of the pieces on the board exist, hence 
so many more different ways of playing the game that a 
game-playing computer program should be able to handle.

The crucial difference between Deep Blue and AlphaGo 
was the shift from programming to learning. Whereas 
Deep Blue was programmed by human experts to play as 
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well as possible, AlphaGo learned to play well by playing 
many games and updating itself using this experience, 
favoring moves and strategies that led to winning the 
game and penalizing those that led to losses.

How this is done is the topic of this book, and as we 
will see, game playing is only one of the many domains 
where we have witnessed this unforeseen sudden jump 
in ability through learning. In the last two decades, using 
systems that learn, we have seen drastic improvements 
in accuracy in various applications that have since been 
successfully commercialized. We now have programs that 
can recognize people from their faces, understand spoken 
speech, recommend a movie, translate text from one lan-
guage to another, and drive a car—all of which have been 
made possible by machine learning.

Once, it used to be the programmer who had to come 
up with a way to solve the problem; the sequence of opera-
tions that needs to be carried out is named an algorithm. 
The algorithm is then coded as a program using a program-
ming language, and the program is executed on a computer. 
In a learning program, on the other hand, the programmer 
specifies how the data (collected through experience) is 
used to update the program so as to improve performance; 
it is the data that determines the final form of the program.

In a programmed system, the programmer knows at 
the time of writing the program how the system is going to 
behave in any situation. The program has no intelligence 
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by itself; it is just a machine that is hardwired to dupli-
cate the intelligence of the programmer. It just does what 
the programmer would do; its only advantage may be its 
speed; it is no more than a calculator.

With learning, however, how a system will act in a sit-
uation is the result of the interaction between the learning 
program and the data, and as we will see, the final sys-
tem very much depends on the quantity and quality of the 
data (i.e., how well the data covers all possible scenarios). 
In such a case, how a trained program will act cannot be 
foreseen by the programmer at the time of writing the pro-
gram, and as such it can be said that a program that has 
learned from data has acquired intelligence beyond that of 
the programmer.

In retrospect, it is not surprising that the learning pro-
gram AlphaGo defeated Lee Se-dol. AlphaGo played (and 
learned from) many more games than any human being 
can play in a lifetime. Likewise, a doctor gains experience 
from their own patients only; a learning medical diagnosis 
system can be trained with the collection of patients of 
thousands of doctors. Similarly, a car that learns to drive 
itself can be trained with many more and much more 
varied scenarios than even the most experienced human 
driver can encounter in a lifetime. That is the advantage 
of collecting big data and analyzing it to infer knowledge.

Of course, learning from data is not new; it is at the 
heart of science. In the past, scientists like Galileo and 
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Kepler designed experiments to make observations and 
collected data; they then came up with laws that explain 
those data. In medicine, cures for many diseases were 
found by collecting information from patients and analyz-
ing them for commonalities and differences. But we are 
now at a point where we want to automate this process of 
going from data to knowledge, because now we have much 
more data and many more application domains.

Since the advent of computers in the middle of the last 
century, our lives have become increasingly computerized 
and digital. Computers are no longer just the numeric cal-
culators they once were. Databases and digital media have 
taken the place of printing on paper as the main medium 
of information storage, and digital communication over 
computer networks supplanted the post as the main mode 
of information transfer. First with the personal computer 
with its easy-to-use graphical interface, and then with the 
phone and other smart devices, the computer has become 
a ubiquitous device, a household appliance just like the 
TV or the microwave. Currently, all sorts of information, 
not only numbers and text but also image, video, audio, 
and so on, are stored, processed, and—thanks to online 
connectivity—transferred digitally. All this digital proc-
essing results in a lot of data, and it is this surge of data 
that is mainly responsible for triggering the widespread 
interest in data analysis and machine learning.
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For many applications—from vision to speech, from 
translation to robotics—we were not able to devise very 
good algorithms despite decades of research beginning in 
the 1950s. But for all these tasks, it is easy to collect data, 
and now the idea is to learn the algorithms for these auto-
matically from data, replacing programmers with learning 
programs. This is the niche of machine learning, and it is 
not only that the data has gotten bigger in these last two 
decades, but also that the theory of machine learning to 
process that data to turn it into knowledge has advanced 
significantly.

Once, if you were smart, you invented a new algo-
rithm; now, if you are smart, you find a new source of data, 
possibly first by writing the app to collect it. In the past, 
computer science advanced one algorithm at a time; now 
information technology advances one app at a time.

Today, in different types of business, from retail and 
finance to manufacturing, as our systems are computer-
ized, more data is continuously generated and collected. 
This is also true in various fields of science, from astron-
omy to biology. In our everyday lives too, as digital tech-
nology increasingly infiltrates our daily existence, as our 
digital footprint deepens, not only as consumers and users 
but also through social media, an increasingly larger part 
of our lives is recorded and becomes data. Whatever its 
source—business, scientific, or personal—data that just 
lies dormant passively is not of any use, and smart people 
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have been finding new ways to make use of that data and 
turn it into a useful product or service. In this transforma-
tion, machine learning is playing a more significant role.

Our belief is that behind all this seemingly complex 
and voluminous data, there lies a simple explanation. That 
although the data is big, it can be explained in terms of a 
relatively simple model with a small number of hidden fac-
tors and their interaction. Think about millions of custom-
ers who buy thousands of products online or from their 
local supermarket every day. This implies a very large data-
base of transactions; but what saves us and works to our 
advantage is that there is a pattern to this data. People 
do not shop at random. A person throwing a party buys 
a certain subset of products, and a person who has a baby 
at home buys a different subset; there are hidden factors 
that explain customer behavior. It is this inference of a 
hidden model—namely, the underlying factors and their 
interaction—from the observed data that is at the core of 
machine learning.

Machine learning is not just the commercial applica-
tion of methods to extract information from data; learn-
ing is also a requisite of intelligence. An intelligent system 
should be able to adapt to its environment; it should learn 
not to repeat its mistakes but to repeat its successes. Pre-
viously, researchers used to believe that for artificial intel-
ligence to become reality, we needed a new paradigm, a 
new type of thinking, a new model of computation, or 
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a whole new set of algorithms. Taking into account the 
recent successes in machine learning in various domains, 
we can now claim that what we need is not a new set of 
specific algorithms but a lot of example data and suffi-
cient computing power to run the learning methods on 
that much data, bootstrapping the necessary algorithms  
from data.

It appears that tasks such as machine translation and 
planning can be solved with learning algorithms that are 
relatively simple but trained on large amounts of exam-
ple data. Recent successes with “deep learning” (e.g., the 
AlphaGo program) support this claim. Intelligence seems 
not to originate from some outlandish formula, but 
rather from the patient, almost brute force use of simple, 
straightforward algorithms.

As technology develops and we get faster computers 
and more data, learning algorithms can be expected to 
generate a slightly higher level of intelligence, which will 
find use in a new set of slightly smarter devices and soft-
ware. It will not be surprising if this type of learned intel-
ligence reaches the level of human intelligence some time 
before this century is over.

I believe that this is the perspective from which we 
can assess the meaning of Lee Se-dol’s retirement. Some 
people may find him unnecessarily touchy; athletes did 
not stop running marathons when cars were invented. 
Playing games such as chess or Go will always be a test of 
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a person’s ability to focus and strategize. People are not 
going to stop playing these games just because a computer 
can beat them; on the contrary, game-playing computer 
programs have the potential to teach them how to play 
those games better.

We can see Lee Se-dol’s resignation as another step 
toward humanity no longer being either the standard by 
which intelligence is measured or the maximum intelli-
gence that can be attained. What we have been encoun-
tering in the last half century as digital technology has 
advanced one milestone at a time (and I believe AlphaGo 
is one such milestone) is similar to the Copernican revolu-
tion where the earth was demoted from being the center 
of the heavens to simply one of the planets in the solar 
system.

We are systematically noticing that what we have with 
our brains is only one way of being intelligent, and not 
necessarily the best one at that. It is amusing that in 2016, 
when Lee Se-dol lost to AlphaGo, this made headlines all 
around the world because this was the first time a com-
puter program defeated the best human player; when he 
retired in 2019, the news article referred to him as “the 
only human to defeat the AI Go player AlphaGo.”

The aim of this book is to give the reader an overall idea 
about what machine learning is, the basics of some impor-
tant learning algorithms, and a set of example applications. 
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The book is intended for a general readership, and only 
the essentials of the learning methods are discussed with-
out any mathematical or programming details. The book 
does not cover any of the machine learning applications 
in much detail either; a number of examples are discussed 
just enough to give the fundamentals without going into 
the particulars.

For more information on machine learning algorithms 
and applications, the reader can refer to my textbook on 
the topic, on which this book is based: Ethem Alpaydın, 
Introduction to Machine Learning, 4th ed. (Cambridge, MA: 
MIT Press, 2020).

The content is organized as follows:
We start by briefly discussing the evolution of com-

puter science and its applications in chapter 1. This is nec-
essary to place in context the current state of affairs that 
created the interest in machine learning—namely, how 
the digital technology advanced from number-crunching 
mainframes to desktop personal computers and later on 
to smart devices that are online and mobile. This chapter 
shows how we have ended up with so much data.

Chapter 2 introduces the basics of machine learning 
and discusses how it relates to model fitting and statistics 
on some simple applications.

Most machine learning algorithms are supervised, 
and in chapter 3, we discuss how such algorithms are used 
for pattern recognition, such as faces and speech.
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Chapter 4 covers artificial neural networks inspired 
from the human brain, how they can learn, and how “deep,” 
multilayered networks can learn hierarchies at different 
levels of abstractions.

Another type of machine learning is unsupervised, 
where the aim is to learn associations between instances. In  
chapter 5, we consider customer segmentation and learn
ing recommendations as popular applications.

Chapter 6 is on reinforcement learning where an auto
nomous agent—for example, a self-driving car—learns to 
take actions in an environment to maximize reward and 
minimize penalty.

As any new technology, since we have started using 
machine learning in the real world, we have started to face 
its concomitant challenges and risks. So this new edition 
has a new chapter, chapter 7, for topics that have become 
increasingly important since 2016 when the first edition 
appeared. These include ethical and legal implications of 
automated decision making, concerns over data privacy 
and security, possible biases in training data, the need for 
explainability, and others.

Chapter 8 concludes by discussing some future direc-
tions and the newly proposed field of “data science” that 
also encompasses high-performance cloud computing.

This book aims to give a quick introduction to what is 
being done today in machine learning, and my hope is to 
trigger the reader’s interest in thinking about what can be 
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done in the future. Machine learning is certainly one of 
the most exciting scientific fields today, advancing tech-
nology in various domains, and it has already generated a 
set of impressive applications affecting all walks of life. I 
have enjoyed very much writing this book; I hope you will 
enjoy reading it too!

I am grateful to the anonymous reviewers for their 
constructive comments and suggestions. As always, it has 
been a pleasure to work with the MIT Press and I would 
like to thank the anonymous reviewers, Kathleen Caruso, 
and Marie Lufkin Lee for all their support.





1

WHY WE ARE INTERESTED IN 
MACHINE LEARNING

The Power of the Digital

Some of the biggest transformations in our lives in the 
last half century are due to computing and digital technol-
ogy. The tools, devices, and services we had invented and 
developed in the centuries before have been increasingly 
replaced by their computerized “e-” versions, and we in 
turn have been continuously adapting to this new digital 
environment.

This transformation has been very fast: once upon a 
time—fifty years ago is mythical past in the digital realm 
where things happen at the speed of light—computers 
were expensive and only very large organizations, such as 
governments, big companies, universities, research cen-
ters, and so on, could afford them. At that time, only they 
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had problems difficult enough to justify the high cost of 
procuring and maintaining a computer. Computer “cen-
ters,” in separate floors or buildings, housed those power-
hungry behemoths, and inside large halls, magnetic tapes 
whirred, cards were punched, numbers were crunched, 
and bugs were real bugs.

As computers became cheaper, they became available 
to a larger selection of the population and in parallel, their 
application areas widened. In the beginning, computers 
were nothing but calculators—they added, subtracted, 
multiplied, and divided numbers to get new numbers. 
Probably the major driving force of the computing tech-
nology is the realization that every piece of information 
can be represented as numbers. This in turn implies that 
the computer, which until then was used to process num-
bers, can be used to process all types of information.

To be more precise, a computer represents every 
number as a particular sequence of binary digits (bits) of 
0 or 1, and such bit sequences can also represent other 
types of information. For example, “101100” can be used 
to represent the decimal 44 and is also the code for the 
comma; likewise, “1000001” is both 65 and the uppercase 
letter ‘A’.1 Depending on the context, the computer pro-
gram manipulates the sequence according to one of the 
interpretations.

Actually, such bit sequences can stand for not only 
numbers and text, but also other types of information—for 
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example, colors in a photo or tones in a song. Even com-
puter programs are sequences of bits. Furthermore, and 
just as important, operations associated with these types 
of information, such as making an image brighter or find-
ing a face in a photo, can be converted to commands that 
manipulate bit sequences.

Computers Store Data

The power of the computer lies in the fact that every piece 
of information can be represented digitally—that is, as 
a sequence of bits—and every type of information proc-
essing can be written down as computer instructions that 
manipulate such digital representations.

One consequence of this emerged in the 1960s with 
databases, which are specialized computer programs that 
store and manipulate data, or digitally represented infor-
mation. Peripheral devices, such as tapes or disks, store 
bits magnetically, and hence their contents are not erased 
when the computer is switched off.

With databases, computers have moved beyond proc-
essing and have become repositories of information using 
the digital representation. In time, the digital medium has 
become so fast, cheap, and reliable that it has supplanted 
printing on paper as humanity’s main means of informa-
tion storage.
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After the invention of the microprocessor and paral-
lel advances in miniaturization and decreasing costs, per-
sonal computers became increasingly available starting in 
the early 1980s. The personal computer has made comput-
ing accessible to small businesses, but most important the 
personal computer was small and cheap enough to be a 
household appliance. You did not need to be a large com-
pany; the computer could help with your life too. The per-
sonal computer confirmed that everyone had tasks that 
are computer-worthy, and the growth of applications fol-
lowed this era of democratization of digital technology.

Graphical user interfaces and the mouse made the per-
sonal computer easy to use. We do not need to learn pro-
gramming, or memorize commands with a difficult syntax, 
to be able to use the computer. The screen is a digital simu-
lacrum of our work environment displaying a virtual desk-
top, with files, icons, and even a trash can, and the mouse 
is our virtual hand that picks them up to read or edit  
them.

The software for the personal computer in parallel 
has moved from commercial to personal applications by 
manipulating more types of data and making more of our 
lives digital. We have a word processor for our letters and 
other personal documents, a spreadsheet for our house-
hold calculations, and software for our hobbies such as 
music or photography; we can even play games if we want 
to! Computing has become everyday and fun.
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The personal computer with its pleasant and inviting 
user interface coupled with a palette of everyday applica-
tions was a big step in the rapprochement between people 
and computers, our life as we used to know it, and the digi-
tal world. Computers were programmed to fit our lives a 
little better, and we have adapted a little to accommodate 
them. In time, using a computer has become a basic skill, 
like driving.

The personal computer was the first step in making 
computers accessible to the masses; it made digital tech-
nology a larger part of our lives and, most important for 
our story in this book, allowed more of our lives to be 
recorded digitally. As such, it was a significant stepping-
stone in this process of converting our lives to data, data 
that we can then analyze and learn from.

Computers Exchange Data

The next major development in computing was in con-
nectivity. Though hooking up computers by data links to 
exchange information had been done before, commercial 
systems started to become widespread in 1990s to con-
nect personal computers to each other or to central serv-
ers over phone or dedicated lines.

The computer network implies that a computer is no 
longer isolated but can exchange data with a computer far 
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away. A user is no longer limited to their own data on their 
own computer but can access data elsewhere, and if they 
want, they can make their data available to other users.

The development of computer networks very quickly 
culminated in the Internet, which is the computer network 
that covers the whole globe. The Internet made it possible 
for anyone in the world who has access to a computer to 
send information, such as an email, to anyone else. And 
because all our data and devices are already digital, the 
information we can share is more than just text and num-
bers; we can send images, videos, music, speech, anything.

With computer networks, digitally represented infor-
mation can be sent at the speed of light to anyone, any-
where. The computer is no longer just a machine where data 
is stored and processed, but it has also become a means to 
transfer and share information. Connectivity increased so 
quickly and digital communication has become so cheap, 
fast, and reliable that digital transfer has supplanted mail 
as the main technology for information transfer.

Anyone who is “online” can make their own data on 
their own computer available over the network to anyone 
else, which is how the World Wide Web was born. People 
can “surf” the Web and browse this shared information. 
Very quickly, secure protocols have been implemented to 
share confidential information, thereby permitting com-
mercial transactions over the Web, such as online shopping 
or banking. Online connectivity has further increased the 
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infiltration of digital technology. When we get an online 
service by using the “www.” portal of the service provider, 
our computer turns into the digital version of the shop, 
the bank, the library, or the university; this, in turn, cre-
ated more data.

Mobile Computing

Every decade we have been seeing computers getting 
smaller, and with advances in battery technology,2 in the 
mid-1990s, portable—laptop or notebook—computers 
that can also run on batteries started to become wide-
spread; this started the new era of mobile computing. Cel-
lular phones also started to become popular around the 
same time, and roughly around 2005, these two technolo-
gies merged in the smartphone.

A smartphone is a phone that is also a computer. In 
time, the smartphone became smarter—more a computer 
and less a phone—so much so that today, the phone is only 
one of many apps on a smartphone, and a rarely used one 
at that. The traditional phone was an acoustic device: you 
talked into it, and you heard the person on the other end 
talking. The smartphone today is more of a visual device; 
it has a large screen and we spend more time looking at 
this screen or tapping its touch-sensitive surface than  
talking.
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A smartphone is a computer that is always online3 
and it allows its user to access the Internet for all types of 
information while mobile. It therefore extends our con-
nectivity in that it permits us greater access—for example, 
while traveling—to data on other computers, as well as 
making us, and our data, accessible to others.

What makes a smartphone special is that it is also a 
mobile sensing device and because it is always on our per-
son, it continuously records information about us, most 
notably our position, and can make this data available. The 
smartphone is a mobile sensor that makes us detectable, 
traceable, recordable.

This increased mobility of the computer is new. Once 
the computer was big and at a “computer center”; it stayed 
fixed, and we needed to walk to it. We sat in front of a 
terminal to use the computer—it was called a “terminal” 
because the computer ended there. Then a smaller com-
puter came to our department, and later a smaller one sat 
on our desk in our office or in our house, and then an even 
smaller one was on our lap, and now the computer is in our 
pocket and with us all the time.

Once there were very few computers, possibly one 
computer per thousands of people—for example, one 
per company or campus. This computer-per-person ratio 
increased very quickly, and the personal computer aimed 
to have one computer for every person. Today we have 
many computers per person. Now all our devices are also 
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computers or have computers in them. Your phone is also 
a computer, your TV is also a computer, your car has many 
computers inside it for different functions, and your music 
player is a specialized computer as is your camera or your 
watch. The smart device is a computer that does the digital 
version of whatever it did originally.

Ubiquitous computing is a term that is becoming 
increasingly popular; it means using computers without 
knowing that you are using one. It means using a lot of 
computers for all sorts of purposes all the time without 
explicitly calling them computers. The digital version has 
its usual advantages, such as speed, accuracy, and easy 
adaptability. But another advantage that is most relevant 
to our discussion is that the digital version of the device 
now has all its data digitally. And furthermore, if it is 
online, it can talk to other online computers and make its 
data available almost instantaneously. We call them “smart 
objects” or just “things” and talk about the Internet of  
Things.

Social Data

A few thousands of years ago, you needed to be a god or 
goddess if you wanted to be painted, be sculpted, or have 
your story remembered and told. A thousand years ago 
you needed to be a king or queen, and a few centuries ago 
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you needed to be a rich merchant, or in the household of 
one. Now anybody, even a soup can, can be painted. A simi-
lar democratization has also taken place in computing and 
data. Once only large organizations and businesses had 
tasks worthy of a computer and hence only they had data; 
starting with the personal computer, people and even 
objects became generators of data.

With most communication now being done using com-
puters (including smartphones) over the Internet, a recent 
source of data is social media, where our social interactions 
have become digital; these now constitute another type 
of data that can be collected, stored, and analyzed. Social 
media replaces discussions in the agora, piazza, market, 
coffeehouse, and pub, or at the gathering by the spring, 
the well, and the water cooler.

With social media, each of us is now a celebrity whose 
life is worth following, and we are our own paparazzi. We 
are no longer allotted only fifteen minutes of fame, but 
every time we are online we are famous. The social media 
allows us to write our digital autobiography as we are liv-
ing it. In the old times, books and newspapers were expen-
sive and hence scarce; we could keep track of and tell the 
story of only important lives. Now data is cheap, and we 
are all kings and queens of our little online fiefdoms. Digi-
tally savvy people of today who are continually posting on 
the social media as they wander from place to place are 
modern day versions of Odysseus, composing, and at the 
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same time broadcasting in real time, their own digitized 
epics, with their own thrills and dangers.

All That Data: The Dataquake

The data generated by all our computerized machines 
and services was once a by-product of digital technology, 
and computer scientists have done significant amount 
research on how to store and manipulate large amounts 
of data in databases most efficiently. Then, we stored data 
because we had to; more data meant costlier storage and 
slower access. Sometime in the last two decades, all this 
data became a resource; now, more data is a blessing.

Think, for example, of a supermarket chain that sells 
thousands of goods to millions of customers every day, 
either at one of the numerous brick-and-mortar stores 
all over a country or through a virtual store over the Web. 
The point-of-sales terminals are digital and record the 
details of each transaction: data, customer id (through 
some loyalty program), goods bought and at what price, 
total money spent, and so forth. The stores are connected 
online, and the data from all the terminals in all the stores 
can be instantaneously collected in a central database. This 
amounts to a lot of (and very up-to-date) data every day.

Especially in the last twenty years or so, people have 
increasingly started to ask themselves what they can do 
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with all this data. With this question the whole direction 
of computing is reversed. Before, data was what the pro-
grams processed and spit out—data was passive. With 
machine learning, data starts to drive the operation; it 
is not the programmers anymore but the data itself that 
defines what to do next.

One thing that a supermarket chain is always eager 
to know is which customer is likely to buy which product. 
With this knowledge, stores can be stocked more efficiently, 
which will increase sales and profit. It will also increase 
customer satisfaction because customers will be able to 
find the products that they need quicker and cheaper.

This task is not evident. We do not know exactly which 
people are likely to buy this ice cream flavor or the next 
book of this author, to see this new movie, or to visit this 
city. Customer behavior changes in time and depends on 
geographic location.

But there is hope, because we know that customer 
behavior is not completely random. People do not go to 
supermarkets and buy things at random. When they buy 
beer, they buy chips; they buy ice cream in summer and 
spices for Glühwein in winter. There are certain patterns 
in customer behavior, and that is where data comes into 
play.

Though we do not know the customer behavior pat-
terns themselves, we expect to see them occurring in the 
collected data. So if we can find such patterns in past data, 
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assuming that the future, at least the near future, will not 
be much different from the past when that data was col-
lected, we could expect them to continue to hold, and we 
can make correct predictions based on them.

We may not be able to identify the process completely, 
but we believe we can construct a good and useful approxi-
mation. That approximation may not explain everything 
but may still be able to account for some part of the data. 
We believe that though identifying the complete process 
may not be possible, we can still detect some patterns. We 
can use those patterns to predict; they may also help us 
understand the process.

This is called data mining. The analogy is that a large 
volume of earth and raw material is extracted from the 
mine, which when processed leads to a small amount of 
very precious material. Similarly, in data mining, a large 
volume of data is processed to construct a simple model 
with valuable use, for example, one with high predictive 
accuracy.

Data mining is one type of machine learning. We do 
not know the rules (of customer behavior), so we can-
not write the program, but the machine—that is, the 
computer—“learns” by extracting such rules from (cus-
tomer transaction) data.

Many applications exist where we do not know the 
rules but have a lot of data. As we discussed before, the fact 
that computers and digital technology have penetrated so 
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deep into our everyday lives implies that now there are 
large amounts of data in all sorts of domains ready for 
mining.

Learning models are also used in pattern recognition, 
for example, in recognizing images captured by a camera 
or recognizing speech captured by a microphone. These 
days, we have different types of sensors used for differ-
ent type of applications, from human activity recognition 
using a smartphone to driving assistance systems in cars.

Another data source is science. As we build better 
sensors, we detect more—that is, we get more data—in 
astronomy, biology, physics, and so on, and we use learn-
ing algorithms to make sense of the bigger and bigger data. 
The Internet itself is one huge data repository, and we need 
smart algorithms to help us find what we are looking for. 
One important characteristic of data we have today is that 
it comes from different modalities—it is multimedia. We 
have text, we have images or video, we have sound clips, 
and so on, all somehow related to the same object or event 
we are interested in, and a major challenge in machine 
learning today is to combine information coming from 
these different sources. For example, in consumer data 
analysis, in addition to past transactions, we also have 
Web logs—namely, the Web pages that a user has visited 
recently—and these logs may be quite informative.

With all types of smart machines continuously help-
ing us in our daily lives, we have all become producers of 
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data. Every time we buy a product, every time we rent a 
movie, visit a Web page, or post on the social media, even 
when we just walk or drive around, we are generating data. 
And that data is valuable for someone who is interested in 
collecting and analyzing it, because we are also consumers 
of data. We want to have products and services specialized 
for us. We want our needs to be understood and our inter-
ests to be predicted. The customer is not only always right, 
but also interesting and worth tracking.

Learning versus Programming

To solve a problem on a computer, we need an algorithm. 
An algorithm is a sequence of instructions that are car-
ried out to transform the input to the output. For example, 
we have an algorithm for calculating payroll: The input is 
the work-related information of an employee, such as a 
timesheet, and personal information such as marital sta-
tus, and the output is their salary.

An algorithm is similar to a recipe for a dish. Preparing 
any dish requires basic actions such as peeling, slicing, fry-
ing, and so on. The recipe for a dish defines which of these 
actions should be carried out on which ingredient and in 
which order. Any person who can do these basic actions 
can prepare a dish just by following the recipe. This is what 
we have in computer programming, where the central 
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processing unit (CPU) of the computer has a set of basic 
instructions and the algorithm defines which instructions 
should be carried out on which input and in which order. 
A software library is just like a cookbook.

In the past decades we have devised algorithms for 
many tasks, and that is why computers and digital technol-
ogy are so widely used now. But for some problems, we do 
not yet have an algorithm. Predicting customer behavior 
is one; another is differentiating spam emails from legiti-
mate ones. We know what the input is: an email document 
that in the simplest case is a text message. We know what 
the output should be: a yes/no output indicating whether 
the message is spam or not. But we do not know how to 
transform the input to the output. What is considered 
spam changes over time and from individual to individual.

What we lack in knowledge, we make up for in data. 
We can easily compile thousands of messages, some of 
which we know to be spam and some of which are not, and 
what we want is to “learn” what constitutes spam from 
this sample. For example, after analyzing example data, 
we may notice that words like “offer” and “opportunity” 
or symbols like “$” or “!” appear much more frequently in 
spam e-mails than they appear in ordinary e-mails, so our 
spam filter increases the probability that a given e-mail is 
spam if it sees any one of these in a new email.

In learning, we would like the computer (the machine) 
to extract automatically the algorithm for the task that 
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underlies the data. There is no need to learn to calculate 
payroll, we already know how to do it, but there are many 
applications for which we do not have an algorithm but 
can collect lots of data.

Artificial Intelligence

Machine learning is not just a database or programming 
problem; it is also a requirement for artificial intelligence. 
A system that is in a changing environment should have 
the ability to learn; if it keeps on making the same mistakes 
over and over, we will hardly call it intelligent. Learning is 
smart from an engineering point of view as well because 
if the system can detect and adapt to changes, the system 
designer need not foresee and provide solutions for all 
possible situations.

For us, the system designer was evolution, and our 
body shape as well as our built-in instincts and reflexes 
have evolved over millions of years. We also learn to 
change our behavior during our lifetime. This helps us cope 
with changes in the environment that cannot be predicted 
by evolution. Organisms that have a short life in a well-
defined environment may have all their behavior built-in, 
but instead of hardwiring into us all sorts of behavior for 
any circumstance that we might encounter in our life, evo-
lution gave us a large brain and a mechanism to learn such 
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that we could update ourselves with experience and adapt 
to different environments. That is why human beings have 
survived and prospered in different parts of the globe in 
very different climates and conditions. When we learn 
the best strategy in a certain situation that knowledge is 
stored in our brain, and when the situation arises again—
when we recognize (“cognize” means to know) the situa-
tion—we recall the suitable strategy and act accordingly.

Each of us, actually every animal, is a data scientist. 
We collect information about our environment using our 
sensors, and then we process the data to devise rules of 
behavior to control our actions in different circumstances 
to minimize pain and/or maximize pleasure. We have 
memory to store those rules in our brains, and then we 
recall and use them when needed. Learning is lifelong; 
we forget rules when they no longer apply or revise them 
when the environment changes.

Learning has its limits though; there may be things 
that we can never learn with the limited capacity of our 
brains, just like we can never “learn” to grow a third arm, 
or an eye in the back of our head—something that would 
require a change in our genetic makeup. Roughly speak-
ing, genetics defines the hardware that slowly adapts over 
thousands of generations through mutation, whereas 
learning defines the adaptation of the software running 
on (and being constrained by) that hardware during an 
individual’s lifetime.
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Artificial intelligence takes inspiration from the brain. 
There are cognitive scientists and neuroscientists whose 
aim is to understand the functioning of the brain, and 
toward this aim, they build models of neural networks 
and make simulation studies. But artificial intelligence is 
a part of computer science and our aim is to build use-
ful systems, as in any domain of engineering. So, though 
the brain inspires us, ultimately, we do not care much 
about the biological plausibility of the algorithms we  
develop.

We are interested in the brain because we believe that 
it may help us build better computer systems. The brain 
is an information-processing device that has some incred-
ible abilities and surpasses current engineering products 
in many domains—for example, vision, speech recogni-
tion, and learning, to name three. These applications have 
evident economic utility if implemented on machines. If 
we can understand how the brain performs these func-
tions, we can define solutions to these tasks as formal 
algorithms and implement them on computers.

Computers were once called “electronic brains,” but 
computers and brains are different. Whereas a computer 
generally has one or few processors, the brain is com-
posed of a very large number of processing units, namely, 
neurons, operating in parallel. Though the details are not 
completely known, the processing units are believed to 
be much simpler and slower than a typical processor in 
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a computer. What also makes the brain different, and is 
believed to provide its computational power, is its large 
connectivity. Neurons in the brain have connections, 
called synapses, to tens of thousands of other neurons, 
and they all operate in parallel. In a computer, the proces-
sor is active, and the memory is separate and passive, but 
it is believed that in the brain both processing and mem-
ory are distributed together over the network; processing 
is done by the neurons and memory occurs in the synapses 
between the neurons.

Understanding the Brain

According to Marr (1982), understanding an information 
processing system works at three levels of analysis:

1.	 Computational theory corresponds to the goal of 
computation and an abstract definition of the task.

2.	 Representation and algorithm define how the input and 
the output are represented, and about the specification 
of the algorithm for the transformation from the input 
to the output.

3.	 Hardware implementation is the actual physical 
realization of the system.
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The basic idea in these levels of analysis is that for the 
same computational theory, there may be multiple repre-
sentations and algorithms manipulating symbols in that 
representation. Similarly, for any given representation 
and algorithm, there may be multiple hardware imple-
mentations. For any theory, we can use one of various 
algorithms, and the same algorithm can have different 
hardware implementations.

Let us take an example: ‘6’, ‘VI’, and ‘110’ are three 
different representations of the number six; respectively, 
they are the Arabic, Roman, and binary representations. 
There is a different algorithm for addition depending on 
the representation used. Digital computers use the binary 
representation and have circuitry to add in this represen-
tation, which is one particular hardware implementation. 
Numbers are represented differently, and addition cor-
responds to a different set of instructions on an abacus, 
which is another physical implementation. When we add 
two numbers “in our head,” we use another representation 
and an algorithm suitable to that representation, which is 
implemented by the neurons. But all these different physi-
cal realizations—namely, us, abacus, digital computer—
implement the same computational theory: addition.

In engineering we go from top to bottom. For example, 
in software engineering, first we decide on the require-
ments, then we go down one step and devise an algorithm 
suitable for the task and the suitable data structures to 
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store the necessary information in computer memory,4 
and finally we go down another step and write the algo-
rithm in a programming language to be executed on a par-
ticular computer.

Sometimes it is necessary to go in the opposite direc-
tion from bottom to top; this is called reverse engineering. 
For example, in World War II, the German military used 
a machine called the Enigma to encrypt communications. 
Intensive work by the Allies resulted in the discovery of its 
internal mechanisms, and this allowed decryption.

Another example, though this is not information 
processing, is the difference between natural and artificial 
flying machines. Humanity had always dreamed of flying, 
and our early attempts to copy birds by putting on big 
wings did not work; our arms and shoulders are not strong 
enough to flap wings big enough to carry our weight—that 
was an attempt to copy at too low a level. But once science 
advanced and we discovered the rules of aerodynamics, 
that is, once we were able to go up to the level of theory, we 
were able to devise another implementation for the same 
theory, and with the means we had, we invented propel-
lers, and later on, jet engines. A sparrow flaps its wings; 
an airplane does not flap its wings but uses jet engines. 
The sparrow and the airplane are two hardware implemen-
tations built for different purposes, satisfying different 
constraints. But they both obey the same theory, which 
is aerodynamics.
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In artificial intelligence, we want to do the same for 
intelligence. We can say that the brain is one hardware 
implementation for intelligence. If from this particu-
lar implementation we can do reverse engineering and 
extract the representation and the algorithm used, and if 
from that in turn we can get the computational theory, we 
can then use another representation and algorithm, and 
in turn a hardware implementation more suited to the 
means and constraints we have.

In chapter 4 we will discuss artificial neural networks 
that are composed of interconnected processing units and 
how such networks can learn—this is the representation 
and algorithm level. In time, when we discover the compu-
tational theory of intelligence, we may discover that neu-
rons and synapses are implementation details, just as we 
have realized that feathers are for flying.

Pattern Recognition

In computer science, we have tried to solve many tasks 
using manually specified rules and algorithms. Decades of 
work have led to very limited success. Some of these tasks 
relate to artificial intelligence in that they are believed to 
require intelligence. The current approach, in which we 
have seen tremendous progress recently, is to use machine 
learning from data.
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Let us take the example of recognizing faces: this is a 
task that we do effortlessly; every day we recognize fam-
ily members and friends by looking at their faces or from 
their photographs, despite differences in pose, lighting, 
hairstyle, and so forth. Face perception is important for 
us because we want to tell friend from foe. It was impor-
tant for our survival not only for identification, but also 
because the face is the dashboard of our internal state. 
Feelings such as happiness, anger, surprise, and shame 
can be read from our face, and we have evolved both to 
display such states as well as to detect it in others.

Though we do such recognition easily, we do it uncon-
sciously and are unable to explain how we do it. Because 
we are not able to explain our expertise, we cannot write 
the corresponding computer program.

By analyzing different face images of a person, a learn-
ing program captures the pattern specific to that person 
and then checks for that pattern in a given image. This is 
one example of pattern recognition.

The reason we can do this is because we know that a 
face image, just like any natural image, is not just a ran-
dom collection of pixels (a random image would be like 
a snowy TV). A face has structure. It is symmetric. The 
eyes, the nose, and the mouth are located in certain places 
on the face. Each person’s face is a pattern composed of a 
particular combination of these. When the illumination 
or pose changes, when we grow our hair or put on glasses, 
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or when we age, certain parts of the face image change 
but some parts do not. The learning algorithm finds those 
unchanging discriminatory features and the way they are 
combined to define a particular person’s face by going over 
a number of images of that person.

What We Talk about When We Talk about Learning

In machine learning, the aim is to have a computer pro-
gram that learns. Learning means getting better through 
experience. “Better” implies a performance criterion that 
is optimized. “Experience” implies data collected in the 
past—for example, in past trials. From a programming 
point of view, “getting better” is implemented as the modi-
fication of the decision-making program so that in time, as 
it sees more data, its output leads to higher performance 
according to the criterion that is to be optimized.

A learning program is different from an ordinary 
computer program in that it is a general template with 
modifiable parameters, and by assigning different values to 
these parameters the program can do all sorts of differ-
ent things. The learning algorithm adjusts the parameters 
of the template—which we call a model—by optimizing a 
performance criterion defined on the data.

For example, for a game-playing program, the param-
eters are adjusted as we play against an opponent so that 
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the ratio of our wins to losses increase. For a face rec-
ognizer, the parameters are adjusted so that we get the 
highest prediction accuracy on a set of training images of 
a person. The learning process is generally repetitive and 
incremental. The learning program sees examples (games 
or faces) one after the other, and the parameters are 
updated slightly at each example, so that the performance 
improves gradually in time. After all, this is what learning 
is: as we learn a task, we get better at it, be it tennis, geom-
etry, or a foreign language.

In chapter 2, we will cover in more detail what the 
template is (actually as we will see, we have different tem-
plates depending on the type of the task) and the different 
learning algorithms that adjust the parameters so as to get 
the best performance.

In building a learner, there are a number of important 
considerations:

First, we should keep in mind that just because we 
have a lot of data, it does not mean that there are underly-
ing rules that can be learned. We should make sure that 
there are dependencies in the underlying process and that 
the collected data provides enough information for them 
to be learned with acceptable accuracy.

Let’s say we have a phone book containing people’s 
names and their phone numbers. It does not make sense 
to believe that there is an overall relationship between 
names and phone numbers; in such a case, we can do no 
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better than just storing the known name–phone number 
pairs in a database. And furthermore, there can be no gen-
eralization to new instances; because we cannot infer a 
general rule, we cannot make a prediction for the phone 
number of a new name.

Second, the learning algorithm itself should be effi-
cient, because generally we have a lot of data and we want 
learning to be as fast as possible, using computation and 
memory effectively. In many applications, the underlying 
characteristics of the problem may change in time; in such 
a case, previously collected data becomes obsolete and 
the need arises to continuously and efficiently update the 
trained model with new data.

Third, once a learner has been built and we start using 
it for prediction, it should be efficient in terms of memory 
and computation as well. In certain applications, the effi-
ciency of the final model may be as important as its predic-
tive accuracy. For the case of a self-driving car for example, 
all the necessary computation for recognition, decision 
making, and action should be done fast enough so that 
the car can go at a reasonable speed.

History

Going from particular examples to general concepts is 
called induction. Over the course of our lives, we see many 
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trees at different times in different places, all slightly 
different from the other trees in some respects; yet, at the 
same time, they also all have something in common, and 
it is this set of common properties that defines our general 
definition of “treeness.” That general concept is stored in 
our mind so that when we see a new object, we can say 
whether it is a tree or not depending on how well that 
object matches our learned definition of “treeness.”

Almost all of science is fitting general models to 
data. Scientists—such as Galileo, Newton, and Mendel—
designed experiments, made observations, and collected 
data. They then tried to extract knowledge by devising 
theories, that is, by building models to explain the 
data they observed.5 They then used these theories to 
make predictions and if they didn’t work, they collected 
more data and revised the theories. This process of data 
collection and theory/model building continued until they 
got models that had enough explanation power.

We are now at a point where this type of data analy-
sis can no longer be done manually, because people who 
can do such analysis are rare; furthermore, the amount 
of data is huge and manual analysis is not possible. There 
is thus a growing interest in computer programs that can 
analyze data and extract information automatically from 
them—in other words, learn.

The methods that we discuss have their origins in 
different scientific domains. It was not uncommon that 
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sometimes the same or very similar algorithms were inde-
pendently invented in different fields following different 
historical paths.

The main theory underlying machine learning comes 
from statistics, where going from particular observations, 
called the sample, to general descriptions of the popula-
tion, is called inference and learning is called estimation. 
Classification is called discriminant analysis in statistics. 
Statisticians used to work on small samples and, being 
mathematicians, mostly worked on simple models that 
could be analyzed mathematically. In engineering, classi-
fication is called pattern recognition and the approach is 
more empirical.

In computer science, as part of work on artificial 
intelligence, research was done on learning algorithms; a 
parallel but almost independent line of study was called 
knowledge discovery in databases. In electrical engineering, 
research in signal processing resulted in adaptive image 
processing and speech recognition programs.

In the mid-1980s, a huge explosion of interest in arti-
ficial neural network models from various disciplines took 
place. These disciplines included physics, statistics, psy-
chology, cognitive science, neuroscience, and linguistics, 
not to mention computer science, electrical engineering, 
and adaptive control. Perhaps the most important con-
tribution of research on artificial neural networks is this 
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synergy that bridged various disciplines, especially statis-
tics and computer science. The fact that neural network 
research, which later led to the field of machine learning, 
started in the 1980s is not accidental. At that time, with 
advances in VLSI (very large-scale integration) technol-
ogy, we gained the capacity to build parallel hardware 
containing thousands of processors, and artificial neural 
networks was of interest as a possible theory to distribute 
computation over a large number of processing units, all 
running in parallel. Furthermore, because they could learn 
from data, they would not need programming.

As we will discuss in chapter 4, a neural network is 
composed of layers of processing units, each checking for 
a particular condition in the input and with successive lay-
ers checking for more abstract conditions. Already in early 
1990s, we witnessed successful neural network applica-
tions; two that stand out were LeCun’s LeNet network for 
recognizing handwritten digits and Tesauro’s TD-Gammon 
network that played backgammon. In this last decade with 
more data and computing power available, we have been 
seeing many impressive applications of “deep” neural 
networks composed of sometimes hundreds of such lay-
ers. So, for example, networks deeper than LeNet are now 
being used in face recognition, and a network deeper than 
TD-Gammon has learned to play Go. The recent tectonic 
interest in machine learning and artificial intelligence is 
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largely due to such successes with deep neural networks. 
Such successes unfortunately have also led to unrealistic 
claims and far-fetched extrapolations.

Machine learning is at the intersection of statistics 
and computer science, occasionally also taking inspira-
tion from cognitive science and neuroscience. Research in 
these different communities followed different paths in 
the past with different emphases. Our aim in this book 
is to bring them together to give a unified introductory 
treatment of the field, together with some interesting 
applications, devoid, as much as possible, of hype.

Now, let us start discussing the basic concepts and 
applications of machine learning.



2

MACHINE LEARNING, STATISTICS, 
AND DATA ANALYTICS

Learning to Estimate the Price of a Used Car

We saw in the previous chapter that we use machine learn-
ing when we believe there is a relationship between the 
observations of interest but do not know how. Because we 
do not know its exact form, we cannot just go ahead and 
write down the computer program. So our approach is to 
collect data of example observations and to analyze it to 
discover the relationship. Now, let us discuss further what 
we mean by a relationship and how we extract it from data; 
as always, it is a good idea to use an example to make the 
discussion concrete.

Consider the problem of estimating the price of a used 
car. This is a good example of a machine learning applica-
tion because we do not know the exact formula for this; at 
the same time, we know that there should be some rules: 



36    chapter 2

the price depends on the properties of the car, such as its 
brand; it depends on usage, such as mileage; and it even 
depends on things that are not directly related to the car, 
such as the current state of the economy.

Though we can identify these as the factors, we do not 
know exactly how they affect the price. For example, we 
know that, on average, as mileage increases price decreases, 
but we do not know how quickly this occurs. How these 
factors are combined to determine the price is what we do 
not know; luckily, we have data to help us. We can look at a 
number of cars currently in the market, record their attri-
butes and how much they go for, and then we can try to 
learn the specifics of the relationship between such attri-
butes and the price.

In doing that, the first question is to decide what to 
use as the input representation, that is, the attributes that 
we believe have an effect on the price of a used car. Those 
that immediately come to mind are the make and model 
of the car, its year of production, and its mileage. You can 
think of others too, but such attributes should be easy to 
record.

One important fact is that there can be two different 
cars having exactly the same values for these attributes, yet 
they can still go for different prices. This is because there 
are other factors that have an effect, such as accessories. 
There may also be factors that we cannot directly observe 
and hence cannot include in the input—for example, all 
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the conditions under which the car has been driven in the 
past and how well the car has been maintained.

The crucial point is that no matter how many proper-
ties we list as input, there are always other factors that 
affect the output; we cannot possibly record and take all of 
them as input, and all these other factors that we neglect 
introduce uncertainty.

The effect of this uncertainty is that we can no longer 
estimate an exact price, but we can estimate an interval in 
which the unknown price is likely to lie, and the length of 
this interval depends on the amount of uncertainty—it 
defines how much the price can vary due to those factors 
that we do not, or cannot, take as input.

Randomness and Probability

In mathematics and engineering, we model uncertainty 
using probability theory. In a deterministic system, given 
the inputs, the output is always the same; in a random 
process, the output depends also on uncontrollable fac-
tors that introduce randomness.

Consider the case of tossing a coin. It can be claimed 
that if we have access to knowledge such as the exact 
composition of the coin, its initial position, the amount, 
position, and the direction of the force applied to the 
coin when tossing it, where and how it is caught, and so 
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forth, the outcome of the toss can be predicted exactly; but 
because all this information is hidden from us, we can only 
talk about the probability of the outcomes of the toss. We 
do not know if the outcome is heads or tails, but we can say 
something about the probability of each outcome, which 
is a measure of our belief in how likely that outcome is. For 
example, if a coin is fair, the probability of heads and the 
probability of tails are equal—if we toss it many times, we 
expect to see roughly as many heads as tails.

If we do not know those probabilities and want to esti-
mate them, then we are in the realm of statistics. We follow 
the common terminology and call each data instance an 

“example” and reserve the word “sample” for the collection 
of such examples. The aim is to build a model to explain the 
process that generates the sample. In the coin tossing case, 
we collect a sample by tossing the coin a number of times 
and record the outcomes—heads or tails—as our observa-
tions. Then, our estimator for the probability of heads can 
simply be the proportion of heads in the sample—if we 
toss the coin six times and see four heads and two tails in 
our sample, we estimate the probability of heads as ⅔ (and 
hence the probability of tails as ⅓). Then if we are asked to 
guess the outcome of the next toss, our estimate will be 
heads because it is the more probable outcome.

This type of uncertainty underlies games of chance, 
which makes gambling a thrill for some people. But most 
of us do not like uncertainty, and we try to avoid it in our 
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lives, at some cost if necessary. For example, if the stakes 
are high, we buy insurance—we prefer the certainty of 
never losing a large amount of money (due to accidental 
loss of something of high worth) to the cost of paying a 
small premium, even if the event is very unlikely.

The price of a used car is similar in that there are 
uncontrollable factors that make the depreciation of a 
car a random process. Two cars following one another on 
the production line are exactly the same at that point and 
hence are worth exactly the same. Once they are sold and 
start being used, all sorts of factors start affecting them: 
one of the owners may be more meticulous, one of the cars 
may be driven in better weather conditions, one car may 
have been in an accident, and so on. Each of these factors 
is like a random coin toss that varies the price.

A similar argument can also be made for customer 
behavior in retail. We expect customers in general to 
follow certain patterns in their purchases depending on 
factors such as the composition of their household, their 
tastes, their income, and so on. Still, there are always addi-
tional random factors that introduce variance: vacation, 
change in weather, some catchy advertisement, and so on. 
As a result of this randomness, we cannot estimate exactly 
which items will be purchased next, but we can calculate 
the probability that an item will be purchased. Then if we 
want to make predictions, we can just choose the items 
whose probabilities are the highest.
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Learning a General Model

Whenever we collect data, we need to collect it in such a way 
as to learn general trends. For example, in representing a 
car, if we use the brand as an input attribute, we define a 
very specific car. But if we instead use general attributes 
such as the number of seats, engine power, trunk volume, 
and so forth, we can learn a more general estimator. This 
is because different models and makes of cars all appeal 
to the same type of customer, called a customer segment, 
and we would expect cars in the same segment to depre-
ciate similarly. Ignoring the brand and concentrating on 
the basic attributes that define the segment is equivalent 
to using the same, albeit noisy, data instance for all such 
cars of the same type; it effectively increases the size of 
our data.

A similar argument can also be made for the output. 
Instead of estimating the price as is, it makes more sense 
to estimate the percentage of its original price, that is, the 
effect of depreciation. This again allows us to learn a more 
general model.

Though of course it is good to learn models that are 
general, we should not try to learn models that are too 
general. For example, cars and trucks have very different 
characteristics, and it is better to collect data separately 
and learn different models for the two than to collect data 
and try to learn a single model covering both.
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Another important fact is that the underlying task may 
change in time. For example, the price of a car depends 
not only on the attributes of the car, the attributes rep-
resenting its past usage, or the attributes of the owner, 
but also on the state of the economy, that is, the price of 
other things. If the economy, which is the environment 
in which we do all our buying and selling, undergoes sig-
nificant changes, previous trends no longer apply. Statisti-
cally speaking, the properties of the random process that 
underlie the data have changed—we are given a new set 
of coins to toss. In this case, the previously learned model 
does not hold anymore, and we need to collect new data 
and learn again; or, if we have a mechanism for getting 
feedback about our performance, we can fine-tune the 
model as we continue to use it.

Model Selection

One of the most critical points in learning is the model 
that defines the template of the relationship between the 
inputs and the output. For example, if we believe that we 
can write the output as a weighted sum of the attributes, 
we can use a linear model where attributes have an additive 
effect.

Let us see an example. Assume we only take mileage 
as our input attribute and that we collect the data given in 
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table 1. We have seven cars whose mileage and price values 
are recorded. We can fit a linear model to that data; that is, 
we draw the line that passes as close as possible to those 
data points. Figure 1 shows the data points and the fitted 
line. That linear model is written as

y = 39258 – 0.3427x

where x denotes the mileage and y denotes the estimated 
price. The line starts at 39,258 US dollars—that is the 
estimate for a car with 0 miles—and every additional mile 
decreases the price by 34.27 cents, or equivalently, every 

Table 1  The example data set is composed of seven cars, 
each with its mileage (in miles) and price (US dollars). 
The index is just to name them; the order of the cars is 
not important.

Index Mileage Price

1 9,000 38,500

2 95,000 6,000

3 20,000 32,000

4 60,000 15,000

5 15,000 35,000

6 30,000 27,000

7 90,000 12,000
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additional 10,000 miles driven pulls the price down by 
3,427 US dollars.

That value, –0.3427, is the weight of mileage on 
price. Not only the value but the sign of a weight is also 
informative. Here, analysis of the data indicated that 
the relationship is negative—as mileage increases price 
decreases—but in another example the weight can be 
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Figure 1  Estimating the price of a used car as a regression task. Each cross 
represents one car from table 1 where the horizontal x-axis is its mileage and 
the vertical y-axis is its price. Together they constitute the training set. In 
estimating the price of a used car, we want to learn a model that fits (passes 
as close as possible to) these data points; an example linear fit is shown. Once 
such a model is fit, it can be used to predict the price of any car given  
its mileage.
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positive; for example, if we have an additional attribute for 
engine power, we will find that price increases with larger 
engines. It may also be the case that the weight estimated 
from the data turn out to be very close to zero; in such a 
case, we can conclude that the corresponding attribute is 
not important and eliminate it from the model.

These weights are the parameters of the model and are 
calculated from the data. The model is always fixed; it is 
the parameters that are adjustable, and it is this process of 
adjustment to better match the data that we call learning.

The linear model is very popular because it is simple; 
it has few parameters and it is easy to calculate a weighted 
sum. It is easy to understand and interpret. Furthermore, 
it works surprisingly well for a lot of different tasks.

No matter how we vary its parameters, each model 
can only be used to learn a set of problems and model selec-
tion refers to the task of choosing between models. Select-
ing the right model is a more difficult task than optimizing 
the parameters of a given model, and information about 
the application is helpful.

For instance, here, in estimating car prices, the linear 
model may not be applicable if the range is long. It has been 
seen empirically that the effect of the age is not arithmetic 
but geometric: each additional year does not decrease the 
price by the same amount, but a typical vehicle loses 15 
percent of its value each year.1 In later sections, we dis-
cuss some machine learning algorithms that use nonlinear 
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models that are more powerful, in the sense that they can 
be used in a larger variety of applications.

Here, it may be a good idea to point out the differ-
ence between machine learning and the usual treatment 
of data in databases. Table 1 may have been drawn from 
a database, containing probably not only the mileage and 
the price, but all sorts of other information about the cars 
and maybe also their owners. Given such a database, one 
can make a query such as, “What is the price of the car 
with 20,000 miles?” and find that it is 32,000 US dollars. 
With a database, we only have information and care about 
those particular cars; a query such as “What is the price 
of the car with 25,000 miles?” is not meaningful because 
there is no such car in the database.

In the case of machine learning, or statistics in general, 
we consider the data in table 1 as a sample, drawn from 
the population of all used cars. We assume that there is 
an underlying process whereby cars lose value as they are 
driven, but we do not know how this process works, and 
we want to extract it from examples. We cannot possibly 
access all possible cars in the population and record the 
mileage and price of all of them; the ones we have access 
to make up a small subset which is our sample. From a sta-
tistical point of view, we do not particularly care about this 
particular sample, there can be mistakes in it, or it could 
just have been a different sample; what we care about is 
the population from which any sample is drawn. And the 
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advantage of learning, namely, going from the particu-
lar sample to the general population, is that now we can 
query it with 25,000 miles, which is equivalent to ask-
ing, “What would be the price of a typical car with 25,000 
miles?” where “typical” means averaged over all used cars 
with 25,000 miles.

Supervised Learning

This task of estimating a numeric output value from a 
set of input values is called regression in statistics; for 
the linear model, we have linear regression. In machine 
learning, regression is one type of supervised learning. In 
this type of learning, for each example we have the input 
and the desired output. The name comes from the sup-
position that there is a supervisor who can provide us with 
the desired output for any input. When we collect data by 
looking at the cars currently sold in the market, we are 
able to observe both the attributes of the cars and also 
their prices.

Earlier, we used the linear model with its weight 
parameters. Each model corresponds to a certain type of 
dependency assumption between the inputs and the out-
put. Learning corresponds to adjusting the parameters 
so that the model makes the most accurate predictions 
on the data. In the general case, learning implies getting 
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better according to a performance criterion, and in regres-
sion, performance depends on how close the model pre-
dictions are to the observed output values in the training 
data. The assumption here is that the training data is large 
and diverse enough to cover sufficiently well the charac-
teristics of the underlying task, so a model that works 
accurately on the training data can be said to have learned 
the task.

The different machine learning algorithms we have in 
the literature either differ in the models they use, or in 
the performance criteria they optimize, or in the way the 
parameters are adjusted during this optimization.

At this point, we should remember that the aim of 
machine learning is rarely to replicate the training data 
but the correct prediction of new cases. If there were only 
a certain number of possible cars in the market and if 
we knew the price for all of them, then we could simply 
store all those values and do a table lookup; this would 
be memorization. But frequently (and this is what makes 
learning interesting), we see only a small subset of all pos-
sible instances and from that data, we want to generalize—
that is, we want to learn a general model that goes beyond 
the training examples to also make good predictions for 
inputs not seen during training.

Having seen only a small subset of all possible cars, we 
would like to be able to predict the right price for a car 
outside the training set, one for which the correct output 



48    chapter 2

was not given in the training set. How well a model trained 
on the training set predicts the right output for such new 
instances is called the generalization ability of the model 
and the learning algorithm.

The basic assumption we make here (and it is this 
assumption that makes learning possible) is that similar 
cars have similar prices, where similarity is measured in 
terms of the input attributes we choose to use. As the 
values of these attributes change slowly—for example, as 
mileage changes—price is also expected to change slowly. 
There is smoothness in the output in terms of the input, 
and that is what makes generalization possible. Without 
such regularity, we cannot go from particular cases to a 
general model, as then there would be no basis in the belief 
that there can be a general model that is applicable to all 
cases, both inside and outside the training set.

Not only for the task of estimating the price of a used 
car, but for many tasks where data is collected from the 
real world, be they for business applications, pattern rec-
ognition, or science, we see this smoothness. Machine 
learning, and prediction, is possible because the world has 
regularities. Things in the world change smoothly. This is 
Leibniz’s dictum that “Nature does not make jumps.” We 
are not “beamed” from point A to point B, but we need 
to pass through a sequence of intermediate locations. 
Objects occupy a continuous block of space in the world. 
Nearby points in our visual field belong to the same object 
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and hence mostly have shades of the same color. Sound 
too, whether in song or speech, changes smoothly. Dis-
continuities correspond to boundaries, and they are rare. 
Most of our sensory systems make use of this smoothness; 
what we call visual illusions, such as the Kanizsa triangle 
(see figure 2), are due to the smoothness assumptions of 
our sensory organs and brain.2

Such an assumption is necessary because collected 
data is not enough to find a unique model—learning, or 
fitting a model to data, is an ill-posed problem. Every learn-
ing algorithm makes a set of assumptions about the data 
to find a unique model, and this set of assumptions is 

Figure 2  The Kanizsa triangle, originally created by the Italian psychologist 
Gaetano Kanizsa in 1955. Although we do not see its whole contour but just 
its tips, we imagine a white triangle in the foreground partially occluding the 
three black circles, because such a triangle is the simplest explanation for 
what we see.
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called the inductive bias of the learning algorithm (Mitch-
ell 1997).

This ability of generalization is the basic power of 
machine learning; it allows going beyond the training 
instances. Of course, there is no guarantee that a machine 
learning model generalizes correctly—it depends on 
how suitable the model is for the task, how much train-
ing data there is, and how well the model parameters are 
optimized—but if it does generalize well, we have a model 
that is much more than the data. This is how we assess 
learning: a student who can solve only the exercises that 
the teacher previously solved in class has not fully mas-
tered the subject; we want them to acquire a sufficiently 
general understanding from those examples so that they 
can also solve new questions about the same topic.

Learning a Sequence

Let us see a very simple example. You are given a sequence 
of numbers and asked to find the next number in the 
sequence. Let us say the sequence is

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

You probably noticed that this is the Fibonacci sequence. 
The first two terms are 0 and 1, and every term that follows 
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is the sum of its two preceding terms, for example, 8 + 13 = 
21. Once you identify the model, you can use it to make a 
prediction and guess that the next number will be 34 + 55 
= 89, and then 55 + 89 = 144, and so on. You can then keep 
predicting using the same model and generate a sequence 
as long as you like.

The reason we come up with this answer is that we are 
unconsciously trying to find a simple explanation for this 
data. This is what we always do. In philosophy, Occam’s 
razor tells us to prefer simpler explanations, eliminating 
unnecessary complexity. For this sequence, a linear rule 
where two preceding terms are added is simple enough.

If the sequence were shorter,

0, 1, 1, 2

you would not immediately go for the Fibonacci sequence—
my prediction would be 2. With short sequences, there 
are many possible, and simpler, rules. As we see one more 
piece of data, those rules whose next value does not match 
are eliminated. Model fitting is basically a process of elimi-
nation: each extra observation (training example) is a con-
straint that eliminates all those candidates that do not 
obey it. And once we run out of the simple ones, we need 
to move on to complicated explanations incrementally to 
cover all the terms.
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The complexity of the model is defined using hyperpa-
rameters. Here the fact that the model is linear and that 
only the previous two terms are used are hyperparameters.

Let us say the sequence is

0, 1, 1, 2, 3, 7, 16, 65, 321

the rule is to sum the square of the first and the second; for 
example, 7 × 7 + 16 = 65. This is not linear but quadratic, 
which is a more complex rule—there is an additional 
multiplication.

If the sequence is

0, 1, 1, 2, 4, 7, 13, 24, 44

the rule is to sum the three preceding values, given the ini-
tial three values 0, 1, 1; for example, 4 + 7 + 13 = 24. This 
is also more complex than the Fibonacci proper because it 
uses three values (inputs) as opposed to two. As you see, 
one needs to adjust the complexity of the model to that 
of the task underlying the data; we can do this either by 
changing the complexity of the calculation or by taking 
more inputs into account.

Now let us say that the sequence is

0, 1, 1, 2, 3, 6, 8, 13, 20, 34, 55
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Maybe you can also find a rule that explains this 
sequence, but I imagine it will be a complicated one. The 
alternative is to say that this is the Fibonacci sequence 
with two errors (6 instead of 5 and 20 instead of 21) and 
still predict 89 as the next number—or we can predict that 
the next number will lie in the interval [88,90].

Instead of a complex model that explains this sequence 
exactly, a noisy Fibonacci may be a more likely explanation 
if we believe that there may be errors (remember our earlier 
discussion on random effects due to unknown factors). And 
indeed, errors are likely. Most of our sensors are far from 
perfect, typists make typos all the time, and though we like 
to believe that we act reasonably and rationally, we also act 
on a whim and buy/read/listen/click/travel on impulse.

Learning also performs compression. Once you learn 
the rule underlying the sequence, you do not need the data 
anymore. By fitting a rule to the data, we get an explana-
tion that is simpler than the data, requiring less memory 
to store and less computation to process. Once we learn 
the rules of multiplication, we do not need to remember 
the product of every possible pair of numbers.

Credit Scoring

Let us now see another application to help us discuss 
another type of machine learning algorithm. A credit is an 
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amount of money loaned by a financial institution such as 
a bank, to be paid back with interest, generally in install-
ments. It is important for the bank to be able to predict in 
advance the risk associated with a loan, which is a measure 
of how likely it is that the customer will default and not 
pay the whole amount back. This is both to make sure that 
the bank will make a profit and also to not inconvenience a 
customer with a loan over their financial capacity.

In credit scoring, the bank calculates a risk given the 
amount of credit and the information about the customer. 
This information includes data we have access to and is 
relevant in calculating the customer’s financial capacity—
namely, income, savings, collateral, profession, age, past 
financial history, and so forth. Again, there is no known 
rule for calculating the score; it changes from place to 
place and time to time. So the best approach is to collect 
data and try to learn it.

Credit scoring can be defined as a regression problem; 
historically the linear model, where the score of a customer 
was written as a weighted sum of different attributes, was 
frequently used. Each additional thousand dollars in sal-
ary increases the score by S points, and each additional 
thousand dollars of debt decreases the score by D points, 
where again the parameters S and D can be learned from 
data. Once we have such a model, we can use it on a new 
application to make a decision where depending on the 
estimated score, different actions can be taken—for 
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example, a customer with a higher score may have a higher 
limit on their credit card.

Instead of regression, credit scoring can also be 
defined as a classification problem, where there are the two 
classes of customers: low-risk and high-risk. Classification 
is another type of supervised learning where the output is 
a class code, as opposed to the numeric value we have in 
regression.

A class is a set of instances that share a common prop-
erty, and in defining this as a classification problem, we 
are assuming that all high-risk customers share some 
common characteristics not shared by low-risk customers, 
and that there exists a formulation of the class in terms of 
those characteristics, called a discriminant. We can visual-
ize the discriminant as a boundary separating examples 
of the two classes in the space defined by the customer 
attributes.

As usual, we are interested in the case where we do 
not know the underlying discriminant but have a sample 
of example data, and we want to learn the discriminant 
from data.

In preparing the data, we look at our past records, 
and we label the customers who paid back their loans as 
low-risk and those who defaulted as high-risk. Analyzing 
this data, we would like to learn the class of high-risk cus-
tomers so that in the future, when there is a new applica-
tion for a loan, we can check whether or not the customer 
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matches that description and reject or accept the applica-
tion accordingly.

The information about a customer makes up the input 
to the classifier whose task is to assign the input to one of 
the two classes. Using our knowledge of the application, 
let us say that we decide to take a customer’s income and 
savings as input (see figure 3). We observe them because 
we have reason to believe that they give us sufficient infor-
mation about the credibility of a customer.

One possible model defines the discriminant in the 
form of if-then rules:

IF income < X AND savings < Y THEN high-risk ELSE 
low-risk

where X and Y are the parameters fine-tuned to the data, 
to best match the rule prediction with what the data tells 
us (see figure 3).

In this model the parameters are these thresholds, not 
weights as we have in the linear model. In regression, the 
task is to find a line that passes as close as possible to the 
data points; in classification, it is to fit a separating bound-
ary between the data points from different classes.

Each if-then rule specifies one composite condition 
made up of terms, each of which is a simple condition on 
one of the input attributes. The antecedent of the rule 
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Figure 3  Separating the low- and high-risk customers as a classification 
problem. The two axes are the income and savings, each in its unit (e.g., in 
thousands of dollars). Each customer, depending on their income and savings, 
is represented by one point in this two-dimensional space, and their class is 
represented by shape—a circle represents a high-risk customer and a square 
represents a low-risk customer. All the high-risk customers have their income 
less than X and savings less than Y, and hence this condition can be used as a 
discriminant, whose shape is shown using thick lines.
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is an expression containing terms connected with AND, 
namely, a conjunction; that is, all the conditions should 
hold for the rule to apply.

We understand from the rule that among the sub-
set of customers that satisfies the antecedent—namely, 
those whose income is less than X and whose savings is 
less than Y—there are more high-risk than low-risk cus-
tomers, so the probability of high risk for them is higher; 
that is why the consequent of the rule has high-risk as its  
label.

In this simple example, there is a single way of being 
high-risk and all the remaining cases are low-risk, so one 
rule is sufficient. In another application, there may be a 
rule base that is composed of several if-then rules, each of 
which delimits a certain region, and each class is specified 
using a disjunction of such rules. There are different ways 
of being high-risk, each of which is specified by one rule 
and satisfaction of any of the rules is enough.

Learning such rules from data allows knowledge extrac-
tion. The rule is a simple model that explains the data and 
looking at this model we have an explanation about the 
process underlying the data. For example, once we learn 
the discriminant separating the low-risk and high-risk 
customers, we have knowledge about the properties of 
low-risk customers. We can then use this information to 
target potential low-risk customers more efficiently, such 
as through customized advertising.
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Expert Systems

Before machine learning was the norm, expert systems 
existed. Proposed in 1970s and used in 1980s,3 they were 
computer programs that aided humans in decision making.

An expert system is composed of a knowledge base 
and an inference engine. The knowledge is represented as 
a set of if-then rules, like the ones we discussed earlier, 
and the inference engine uses logical inference rules for 
deduction. The rules are programmed after consultation 
with domain experts, and they are fixed. This process of 
converting domain knowledge to if-then rules was manual, 
and hence difficult and costly. The inference engine was 
programmed in specialized programming languages such 
as Lisp and Prolog, which are especially suited for logical  
inference.

For a time in the 1980s, expert systems were quite 
popular around the world, not only in the United States 
(where Lisp was used), but also in Europe (where Prolog 
was used). Japan had a Fifth Generation Computer Sys-
tems Project for massively parallel architectures for expert 
systems and artificial intelligence (AI). There were applica-
tions, but in rather limited domains, such as MYCIN for 
diagnosing infectious diseases (Buchanan and Shortliffe 
1984); commercial systems also existed.

Despite the research and the wide interest, expert 
systems never took off. There are basically two reasons 
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for this. First, the knowledge base needed to be created 
manually through a very laborious process; there was no 
learning from data. The second reason was the unsuitabil-
ity of logic to represent the real world. In real life, things 
are not true or false, but have grades of truth: a person 
is not either old or not old, but oldness increases gradu-
ally with age. The logical rules too may apply with different 
degrees of certainty: “If X is a bird, X can fly” is mostly true 
but not always.

To represent degrees of truth, fuzzy logic was proposed 
with fuzzy memberships, fuzzy rules, and inference, and 
since its inception, had some success in a variety of appli-
cations (Zadeh 1965). Another way to represent uncer-
tainty is to use probability theory, as we do in this book.

Machine learning systems that we discuss in this 
book are extensions of expert systems in decision making 
in two ways: first, they need not be programmed but can 
learn from examples, and second, because they use prob-
ability theory, they are better in representing real-world 
settings with all the concomitant noise, exceptions, ambi-
guities, and resulting uncertainty.

Expected Values

When we make a decision—for example, when we choose 
one of the classes—we may be correct or wrong. It may be 
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the case that correct decisions are not equally good and 
wrong decisions are not equally bad. When making a deci-
sion about a loan applicant, a financial institution should 
take into account both the potential gain as well as the 
potential loss. An accepted low-risk applicant increases 
profit, while a rejected high-risk applicant decreases loss. 
A high-risk applicant who is erroneously accepted causes 
loss, and an erroneously rejected low-risk applicant is a 
missed chance for profit.

The situation is much more critical and far from sym-
metrical in other domains, such as medical diagnosis. Here, 
the inputs are the relevant information we have about the 
patient and the classes are the illnesses. The inputs con-
tain the patient’s age, gender, past medical history and 
current symptoms. Some tests may not have been applied 
to the patient, and these inputs would be missing. Tests 
take time, are costly, and may inconvenience the patient, 
so we do not want to apply them unless we believe they 
will give us valuable information.

In the case of medical diagnosis, a wrong decision may 
lead to wrong or no treatment, and the different types of 
error are not equally bad. Let us say we have a system that 
collects information about a patient and based on those, 
we want to decide whether the patient has a certain dis-
ease (say a certain type of cancer) or not. There are two 
possibilities: either the patient has cancer—let us call it 
the positive class—or not—the negative class.
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Similarly, there are two types of errors (see table 2). If 
the system predicts cancer but in fact the patient does not 
have it, this is a false positive—the system chooses the pos-
itive class wrongly. This is bad because it will cause unnec-
essary treatment, which is both costly and inconvenient 
for the patient. If the system predicts no disease when in 
fact the patient has it, this is a false negative. A false nega-
tive has a higher cost than a false positive because then 
the patient will not get the necessary treatment. Because 
the cost of a false negative is so much larger than the cost 
of a false positive, we would choose the positive class—to 
start a closer investigation—even if the probability of the 
positive class is relatively small. This is not like predict-
ing a coin toss where we choose the outcome—heads or 
tails—whose probability is higher than ½ (because the 
two possible wrong guesses are equally bad).

Table 2  Different types of errors in decision making

Action

Truth Choose positive
(start treatment)

Choose negative
(discharge the patient)

Sum

Positive
(the patient has cancer)

TP:
True positive

FN:
False negative

P

Negative
(the patient does not 
have cancer)

FP:
False positive

TN:
True negative

N

Sum P′ N′
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This is the basis of expected value calculation where 
not only do we decide by using probabilities, but we also 
take into account the possible loss or gain we may face as a 
result of our decision. Though expected value calculation 
is frequently done in many domains, such as in insurance, 
it is known that people do not always act rationally; if that 
were the case, no one would buy a lottery ticket!

In Max Frisch’s novel Homo Faber, the mother of a girl 
who was bitten by a snake is told not to worry because the 
mortality from snakebites is only 3–10 percent. The woman 
gets angry and says, “If I had a hundred daughters . . . then 
I should lose only three to ten daughters. Amazingly few! 
You’re quite right,” and then she continues, “I’ve only 
got one child.” We need to be careful in using expected 
value calculation when ethical matters are involved; 
later on for the case of self-driving cars, we will get back 
to ethical and also legal aspects of automated decision  
making.4

If both false positive and false negative have high 
costs, a possible third action is to reject and defer deci-
sion. For example, if computer-based diagnostics cannot 
choose between two outcomes, it can opt to reject, and the 
case can be decided manually; the human expert can make 
use of additional information not directly available to the 
system. In an automated mail sorter, if the system cannot 
recognize the numeric zip code on an envelope, the postal 
worker can also read the address.
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In classification, when false positives and false nega-
tives are equally bad, their sum, FP + FN, gives us the num-
ber of misclassifications. For example, let us say we have a 
visual recognition system that separates cars from tanks, 
and let us assume cars make up the positive class. Then 
FP is the number of tanks classified as cars and FN is the 
number of cars classified as tanks. Their sum divided by 
the total number of images, (FP + FN)/(P + N), is the clas-
sification error, or equivalently, (TP + TN)/(P + N), is the 
classification accuracy.

In other applications, the performance criterion can 
be different. Let us envisage an application where people 
are allowed to access their bank accounts by their voice. A 
false positive is an allowed impostor and a false negative 
is a valid user that is denied service. The former is much 
worse than the second. The hit rate, or the true-positive 
rate, measures what proportion of valid users is correctly 
authenticated, TP/P, and false alarm rate, or false-positive 
rate, measures what proportion of impostors are wrongly 
authenticated, FP/N.

There is a trade-off between the two. If we modify our 
classifier so that it chooses the positive class more easily, 
this increases the hit rate, but also risks increasing the 
false alarm rate. In deciding when to choose which class, 
we want to make the hit rate as large as possible while 
keeping the false alarm rate as small as possible.
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In information retrieval, we have a query—for example, 
defined using keywords—and we want to retrieve records 
that match the query from a database. For example, let 
us say we want to retrieve images of tigers using the 
keyword “tiger” from a database of images. In such a case, 
an image that is retrieved corresponds to assignment 
to the positive class and an image that is not retrieved 
corresponds to assignment to the negative class. In this 
case, TP corresponds to the number of tiger images that are 
retrieved, and FN to the number of tiger images that exist 
in the database but are not retrieved. FP is the number of 
images that are retrieved but are not tiger images.

In this scenario, we have two performance criteria. 
Precision is the ratio of true positives to all the retrieved 
instances, namely, TP/P’ = TP/(TP + FP), that is, what 
percentage of the retrieved instances are really relevant, 
that is, match the query. Recall is the ratio of true 
positives to all the positive instances, namely, TP/P, that 
is, what percentage of the relevant instances are actually  
retrieved.

We want both precision and recall to be as close to 1 
as possible: If precision is 1, all the retrieved records may 
be relevant but there may still be relevant records that 
are not retrieved. If recall is 1, all the relevant records are 
retrieved but there may also be other retrieved irrelevant 
records (see figure 4). Again, we see the trade-off between 
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precision and recall. We can always increase recall by 
retrieving more images but that risks decreasing precision.

We see that unlike in classification, we do not care 
about the true negatives here; those are non-tiger images 
that are correctly not retrieved; in retrieval we do not 
care about those, their number can increase or decrease 
depending on the size and scope of the database without 
affecting our performance assessment.

In other domains—for example, in medicine—people 
use the measures of sensitivity and specificity. Sensitivity 
is the same as recall, which measures how well we detect 
the positives. Specificity is how well we detect the nega-
tives, which is TN/N—it is equal to 1 – false alarm rate. 
For example, let us say we have developed a test for a 
virus: Sensitivity is how well the test catches the people 

Retrieved
instances

Relevant
instances

TN

TPFP FN

Figure 4  Precision and recall explained in terms of Venn diagrams. 
Precision is TP/(TP + FP) and recall is TP/(TP + FN).
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who have the virus and specificity is how well it is silent 
on people who do not have the virus.

In this chapter, we have discussed the basics of 
machine learning in general; in the next chapter, we will 
cover one type of learning, supervised learning, that finds 
use, for example, in recognizing patterns such as faces and 
speech.





3

PATTERN RECOGNITION

Learning to Read

Different automatic visual recognition tasks have differ-
ent complexities. One of the simplest is the reading of bar-
codes where information is represented in terms of lines of 
different widths, which are shapes that are easy to recog-
nize. The barcode is a simple and efficient technology: It is 
easy to print barcodes, and it is also easy to build scanners 
to read them; that is why they are still widely used. But the 
barcode is not a natural representation, and the informa-
tion capacity is limited; recently two-dimensional matrix 
barcodes have been proposed where more information can 
be coded in a smaller area; for example, QR codes that can 
be scanned by a smartphone point to a website.

There is always a trade-off in engineering. When the 
task is difficult to solve, we can devise more efficient 
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solutions by constraining it. For example, the wheel is 
a very good solution for transportation, but it requires 
flat surfaces and so roads too have to be built. The con-
trolled environment makes the task easier. Legs work in 
a variety of terrains, but they are more difficult to build 
and control, and they can carry a significantly less heavy  
load.

Optical character recognition is recognizing printed or 
written characters from their images. This is more natural 
than barcodes because no extra coding (in terms of bars) 
is used. If a single font is used, there is a single way of 
writing each character; there are standardized fonts such 
as OCR-A, defined specifically to make automatic recogni-
tion easier.

With barcodes or a single font, a single template exists 
for each class and there is no need for learning. For each 
character, we have a single prototype that we can simply 
store. It is the ideal image for that character, and we com-
pare the seen input with all the prototypes one by one and 
choose the class with the best matching prototype—this 
is called template matching. There may be errors in print-
ing or sensing, but we can do recognition by finding the 
closest match.

If we have many fonts or handwritings, we have mul-
tiple ways of writing the same character, and we cannot 
possibly store all of them as possible templates. Instead, 
we want to “learn” the class by going over all the different 
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examples of the same character and find some general 
description that covers all of them.

It is interesting that though writing is a human inven-
tion, we do not have a formal description of ‘A’ that cov-
ers all ‘A’s and none of the non-‘A’s. Not having it, we take 
samples from different writers and fonts, and learn a defi-
nition of ‘A’-ness from these examples. But though we do 
not know what it is that makes an image an instance of 
the class ‘A’, we are certain that all those distinct ‘A’s have 
something in common, which is what we want to extract 
from the examples.

We know that a character image is not just a collection 
of random dots and strokes of different orientations, but 
it has a regularity that we believe we can capture by using 
a learning program. For each character, we see examples in 
different fonts (for printed text) or writings (for handwrit-
ten text) and generalize; that is, we find a description that 
is shared by all of the examples of a character: ‘A’ is one 
way of combining a certain set of strokes, ‘B’ is another 
way, and so on.

Recognition of printed characters is relatively easy 
with the Latin alphabet and its variants; it is trickier with 
alphabets where there are more characters, accents, and 
writing styles. In cursive handwriting, characters are con-
nected and there is the additional problem of segmentation.

Many different fonts exist, and people have different 
handwriting styles. Characters may also be small or large, 
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slanted, printed in ink or written with a pencil, and as a 
result, many possible images can correspond to the same 
character. Despite all the research, there is still no com-
puter program today that is as accurate as humans for this 
task. That is why captchas are still used, a captcha being 
a corrupted image of words or numbers that needs to be 
typed to prove that the user is a human and not a com-
puter program.

Matching Model Granularity

In machine learning, the aim is to fit a model to the data. 
In the ideal case, we have one single, global model that 
applies to all of the instances. For all cars, as we saw in 
chapter 2, we have a single regression model that we can 
use to estimate the price. In such a case, the model is 
trained with the whole training data and all the instances 
have an effect on the model parameters. In statistics, this 
is called parametric estimation.

The parametric model is good because it is simple—we 
store and calculate a single model—and it is trained with 
the whole data. Unfortunately, it may be restrictive in the 
sense that this assumption of a single model applicable 
to all cases may not hold in all applications. In certain 
tasks, we may have a set of local models, each of which 
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is applicable to a certain type of instances. This is semi-
parametric estimation. We still have a model that maps the 
input to the output but is valid only locally, and for differ-
ent type of inputs we have different models.

For example, in estimating the price of used cars, we 
may have one model for sedans, another model for sports 
cars, and another for luxury cars, if we have reason to 
believe that for these different types of cars, the depre-
ciation behaviors are different. In such an approach, each 
local model is trained only with the training data that 
falls within its scope—the number of local models is the 
hyperparameter defining the model flexibility and hence 
complexity.

In certain applications, even the semi-parametric 
assumption may not hold; that is, the data may lack a 
clear structure and it cannot be explained in terms of a 
few local models. In such a case, we use the other extreme 
of nonparametric estimation where we assume no simple 
model, either globally or locally. The only information we 
use is the most basic assumption—namely, that similar 
inputs have similar outputs. In such a case, we do not have 
an explicit training process that converts training data to 
model parameters; instead, we just keep the training data 
as the sample of past cases.

Given an instance, we find the training instances that 
are most similar to the query and we calculate an output in 
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terms of the known outputs of these past similar instances. 
For example, given a car whose price we want to estimate, 
we find among all the training instances the three cars that 
are most similar—in terms of the attributes we use—and 
then calculate the average of the prices of these three cars 
as our estimate. Because those are the cars that are most 
similar in their attributes, it makes sense that their prices 
should be similar too. This is called k-nearest neighbor esti-
mation where here k is three. Since those are the three 
most similar past “cases,” this approach is sometimes 
called case-based reasoning. The nearest-neighbor algo-
rithm is intuitive: similar instances mean similar things. 
We all love our neighbors because they are so much like 
us—or we hate them, as the case may be, for exactly the 
same reason.

Generative Models

An approach that has recently become very popular in data 
analysis is to consider a generative model that represents 
our belief as to how the data is generated. We assume 
that there is a hidden model with a number of hidden, or 
latent, causes that interact to generate the data we observe. 
Though the data we observe may seem big and compli-
cated, it is produced through a process that is controlled 
by a few variables, which are the hidden factors, and if we 
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can somehow infer these, the data can be represented and 
understood in a much simpler way. Such a simple model, if 
it is appropriately chosen and well trained, can also make 
accurate predictions.

Consider optical character recognition. Generatively 
speaking, we can say that each character image is com-
posed of two types of factors: there is the identity, namely 
the label of the character, and there is the appearance, 
those that are due to the process of writing or printing.

In a printed text, the appearance part may be due to 
the font; for example, characters in Times Roman font 
have serifs and strokes that are not all of the same width. 
The font is an aesthetic concern; in calligraphy, it is the 
aesthetic part that becomes especially prominent. Just 
like the choice of font in printed text, the handwriting 
style of the writer introduces variance in written text. 
But these added characteristics due to appearance should 
not be large enough to cause confusion about the iden-
tity, otherwise we say that the person has a bad or illegible 
handwriting. The appearance also depends on the material 
the writer is using (e.g., pen versus pencil) and also on the 
medium (e.g., paper versus marble slab).1

The printed or written character may be large or small, 
and this is generally handled at a preprocessing stage of 
normalization where the character image is converted to 
a fixed size—we know that the size does not affect the 
identity. This is called invariance. We want invariance to 
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size (whether the text is 12pt or 18pt, the content is the 
same) or invariance to slant (as when the text is in italics) 
or invariance to the width of strokes (as in bold charac-
ters). But, for example, we do not want invariance to large 
rotations: q is a rotated b.

In recognizing the class, we need to focus on the 
identity, and we should find attributes that represent the 
identity, and learn how to combine them to represent the 
character. We treat all the attributes that relate to the 
appearance, namely the writer, aesthetics, medium, and 
sensing, as irrelevant and learn to ignore them. But note 
that in a different task, those may be the important ones; 
for example, in authentication of handwriting or in sig-
nature recognition, it is the writer-specific attributes that 
become important and not the content.

The generative model is causal in that it explains how 
the data is generated by hidden factors that cause it. Once 
we have such a model trained, we may want to use it for 
diagnostics, which implies going in the opposite direction, 
that is, from observation to cause. Medical domain is a 
good example here: the diseases are the causes and they 
are hidden; the symptoms are the observed attributes of 
the patient, such as the results of medical tests. Going 
from disease to symptom is the causal direction—that is 
what the disease does; going from symptom to disease is 
diagnostics—that is what the doctor does. In the general 



Going from disease  
to symptom is the  
causal direction—that  
is what the disease  
does; going from  
symptom to disease is 
diagnostics—that is 
what the doctor does.
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case, diagnostics is the inference of hidden factors from 
observed variables.

A generative model can be represented as a graph com-
posed of nodes that correspond to hidden and observed 
variables, and the arcs between nodes represent depen-
dencies between them, such as causalities. Such graphical 
models are interesting in that they allow a visual represen-
tation of the problem, and statistical inference and esti-
mation procedures can be mapped to well-known graph 
operations for which we already have efficient procedures 
in computer science (Koller and Friedman 2009).

In a graphical model, a causal link goes from a hidden 
factor to an observed symptom, while a diagnostics effec-
tively inverts the direction of the link. We use conditional 
probability to model the dependency, and for example, 
when we talk about the conditional probability that a 
patient has a runny nose given that they have the flu, we 
go in the causal direction: the flu causes the runny nose 
(with a certain probability).

If we have a patient and we know they have a runny 
nose, we need to calculate the conditional probability in 
the other direction—namely, the probability that they 
have the flu given that they have a runny nose (see fig-
ure 5). In probability, the two conditional probabilities are 
related because of the Bayes’ rule,2 and that is why graphi-
cal models are sometimes also called Bayesian networks. 
In a later section, we return to Bayesian estimation; we 
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see that we can also include the model parameters in such  
networks and that this allows additional flexibility.

If we are reading a text, one factor we can make use 
of is the language information. A word is a sequence of 
characters, and we rarely write an arbitrary sequence 
of characters; we choose a word from the lexicon of the 
language. This has the advantage that even if we cannot 
recognize a character, we can still read t?e word. Such 
contextual dependencies may also occur at higher levels, 
between words and sentences as defined by the syntac-
tic and semantic rules of the language. Machine learning 

Runny nose

Flu

Causal Diagnostics

Figure 5  The graphical model showing that the flu is the cause of a runny 
nose. If we know that the patient has a runny nose and want to check the 
probability that they have the flu, we are doing diagnostics by making 
inference in the opposite direction (using Bayes’ rule). We can form larger 
graphs by adding more nodes and links to show increasingly complicated 
dependencies.
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algorithms help us learn such dependencies for natural 
language processing, as we discuss shortly.

Face Recognition

In the case of face recognition, the input is the image cap-
tured by a camera and the classes are the people to be rec-
ognized. The learning program should learn to match the 
face images to their identities. This problem is more dif-
ficult than optical character recognition because the input 
image is larger, a face is almost three-dimensional, and dif-
ferences in pose and lighting cause significant changes in 
the image. Certain parts of the face may also be occluded; 
glasses may hide the eyes and eyebrows, and a beard may 
hide the chin.

Just as in character recognition, we can think of two 
sets of factors that affect the face image: there are the fea-
tures that define the identity, and there are features that 
have no effect on the identity but affect appearance, such 
as hairstyle; or expression (namely, neutral, happy, angry, 
and so forth). These appearance features may also be due 
to hidden factors that affect the captured face image, such 
as the source of illumination or the pose. If we are inter-
ested in the identity, we want to learn a face description 
that uses only the first type of features, learning to be 
invariant to features of the second type.
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However, we may be interested in the second type of 
features for other tasks. Recognizing facial expressions 
allows us to recognize emotions, as opposed to identity. 
For example, during a video monitoring a meeting, we 
may want to keep track of the mood of the participants. 
Likewise, in online education, it is important to under-
stand whether the student is confused or gets frustrated, 
to better adjust the speed of presenting the material. In 
affective computing, which is a field that is rapidly becom-
ing popular, the aim is to have computer systems that can 
recognize and take into account human affects, that is, the 
observed manifestations of emotions.

If the aim is identification or authentication of peo-
ple—for example, for security purposes—using the face 
image is only one of the possibilities. Biometrics is rec-
ognition or authentication of people using their physi-
ological and/or behavioral characteristics. In addition to 
the face, examples of physiological characteristics are the 
fingerprint, iris, and palm; examples of behavioral char-
acteristics include the dynamics of signature, voice, gait, 
and keystroke. For more accurate decisions, inputs from 
different modalities can be integrated. When there are 
many different input sources—as opposed to the usual 
identification procedures of photo, printed signature, or 
password—forgeries (spoofing) becomes more difficult 
and the system more accurate, hopefully without too 
much inconvenience to the users.
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Speech Recognition

In speech recognition, the input is the acoustic signal cap-
tured by a microphone and the classes are the words that 
can be uttered. This time the association to be learned is 
between an acoustic signal and a word of some language.

Just as we can consider each character image to be 
composed of basic primitives like strokes of different ori-
entations, a word is made up of phonemes, which are the 
basic speech sounds. In the case of speech, the input is 
temporal; words are uttered in time as a sequence of these 
phonemes, and some words are longer than others.

Different people, because of differences in age, gen-
der, or accent, pronounce the same word differently, and 
again, we may consider each word sound to be composed 
of two sets of factors, those that relate to the word and 
those that relate to the speaker. Speech recognition uses 
the first type of features, whereas speaker authentication 
uses the second. Incidentally, this second type of features 
(those relating to the speaker) is not easy to recognize or 
to artificially generate—that is why the output of speech 
synthesizers still sounds “robotic.”3

Just as in biometrics, researchers here also rely on the 
idea of combining multiple sources. For example, to rec-
ognize speech, in addition to the acoustic information, we 
can also use the video image of the speaker’s lips and the 
shape of the mouth as they speak the words.
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Natural Language Processing and Translation

In speech recognition, as in optical character recogni-
tion, the integration of a language model taking contextual 
information into account helps significantly. Decades of 
research on programmed rules in computational linguis-
tics have revealed that the best way to come up with a lan-
guage model (defining the lexical, syntactic, and semantic 
rules of the language) is by learning it from some large cor-
pus of example data. The applications of machine learning 
to natural language processing are constantly increasing; 
see Hirschberg and Manning 2015 for a recent survey, or 
Eisenstein 2019 for a textbook on the topic.

One of the easier applications is spam filtering, where 
spam generators on one side and filters on the other side 
keep finding more and more ingenious ways to outdo each 
other. This is a classification problem with two classes, 
spam and legitimate emails. A similar application is docu-
ment categorization where we want to assign text docu-
ments to one of several categories, such as arts, culture, 
politics, and so on.

A face is an image and a spoken sentence is an acous-
tic signal, but what is in a text? A text is a sequence of 
characters, but characters are defined by an alphabet and 
the relationship between a language and the alphabet is 
not straightforward. The human language is a very com-
plex form of information representation with its lexical, 
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syntactic, and semantic rules at different levels, together 
with its subtleties such as humor and sarcasm, not to men-
tion the fact that a sentence almost never stands or should 
be interpreted alone, but is part of some dialogue or gen-
eral context.

The easiest method for representing a text is the bag 
of words representation where we predefine a large vocab-
ulary of words and then we represent each document by 
using a list of the words that appear anywhere in the docu-
ment. That is, of the words we have chosen, we note which 
ones appear in the document and which ones do not. We 
lose the position of the words in the text, which may be 
good or bad depending on the application. In choosing 
a vocabulary, we choose words that are indicative of the 
task; for example, in spam filtering, words such as “oppor-
tunity” and “offer” are discriminatory. There is a prepro-
cessing step where suffixes (e.g., “-ing,” “-ed”) are removed, 
and where noninformative words (e.g., “the,” “of”) are  
ignored.

Recently, analyzing messages on social media has 
become an important application area of machine learn-
ing. Analyzing posts to extract trending topics is one: this 
implies a certain novel combination of words that has 
suddenly started to appear a lot. Another task is sentiment 
analysis, that is, determining whether a customer is happy 
or not with a product (e.g., a politician). For this, one can 
define a vocabulary containing words indicative of the 
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two classes—happy versus not happy—using the bag of 
words representation and learn how they affect the class 
descriptions.

Perhaps the most impressive application of machine 
learning is machine translation. After decades of research 
on hand-coded translation rules, it has become appar-
ent that the most promising approach is to provide a 
very large sample of pairs of texts in both languages and 
to have a learning program automatically figure out the 
rules to map one to the other. In bilingual countries such 
as Canada, and in the European Union with its many offi-
cial languages, it is relatively easy to find the same text 
carefully translated in two or more languages. Such data is 
used by machine learning approaches to translation.

In chapter 4, we will discuss deep learning, which shows 
a lot of promise for this task, in automatically learning the 
different layers of abstraction that are necessary for proc-
essing natural language.

Combining Multiple Models

In any application, we can use any one of various learn-
ing algorithms and instead of trying to choose the single 
best one, a better approach may be to use them all and 
combine their predictions. We saw before that each algo-
rithm comes with a set of assumptions, which we called its 
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inductive bias, and each one may hold true on a different 
subset of the data. So we do not want to “put all our eggs 
in the same basket” but use them all.

For best accuracy, the different models we combine 
should be good by themselves and at the same time diverse 
to best complement each other. This is just like in real life 
where the best committee is composed of people having 
different areas of expertise; it makes no sense to consult 
multiple people if they all have very similar educations or 
backgrounds.4

One way to get diversity is by having models look 
at different sources of information. We already saw this 
in biometrics where the different models take different 
characteristics—for example, face, fingerprints, and so 
on—as input, and in speech recognition where in addi-
tion to the acoustic speech signal we also keep track of the 
speaker’s lip.

Today, most of our data is multimedia, and multi-view 
models can be used in a variety of contexts where we have 
different sensors providing different but complemen-
tary information. In image retrieval, in addition to the 
image itself, we may also have a text description or a set 
of tag words. Using both sources together leads to better 
retrieval performance. Our smart devices, such as smart 
watches and smartphones, are equipped with sensors, 
and their readings can be combined for the purpose of, for 
example, activity recognition.
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Outlier Detection

Another application area of machine learning is outlier 
detection, where the aim this time is to find instances that 
do not obey the general rule—those are the exceptions 
that are informative in certain contexts. The idea is that 
typical instances share characteristics that can be simply 
stated, and instances that do not have them are atypical.

In Anna Karenina, Tolstoy writes, “All happy fami-
lies resemble one another, but each unhappy family is 
unhappy in its own way.” This holds true in many domains, 
and not only for the case of nineteenth-century Russian 
families. For example, in medical diagnosis, we can simi-
larly say that all healthy people are alike and that there are 
different ways of being unhealthy—each one of them is 
one disease.

In such a case, the model covers the typical instances 
and then any instance that falls outside is an exception. 
An outlier is an instance that is very much different from 
other instances in the sample. An outlier may indicate an 
abnormal behavior of the system; for example, for a credit 
card transaction, it may indicate fraud; in an image, an 
outlier may indicate an anomaly requiring attention, for 
example, a tumor; in the case of network traffic, it may be 
an intrusion attempt by a hacker; in a health-care scenario, 
it may indicate a significant deviation from a patient’s 
normal behavior. Outliers may also be recording errors 
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(e.g., due to faulty sensors) that should be detected and 
discarded to get reliable statistics. An outlier may also be a 
novel, previously unseen but valid case, which is where the 
related term, novelty detection, comes into play. For exam-
ple, it may be a new type of profitable customer, indicating 
a new niche in the market waiting to be exploited by the 
company.

Dimensionality Reduction

In any application, observed data attributes that we believe 
contain information are taken as inputs and are used for 
decision making. However, it may be the case that some of 
these features actually are not informative at all, and they 
can be discarded; for example, it may turn out that the 
color of a used car does not have a significant effect on its 
price. Or, it may be the case that two different attributes 
are correlated and say basically the same thing (e.g., the 
production year and mileage of a used car are highly cor-
related), so keeping one may be enough.

We are interested in dimensionality reduction in a sepa-
rate preprocessing step for a number of reasons:

First, in most learning algorithms, both the complex-
ity of the model and the training algorithm depend on the 
number of input attributes. Here, complexity is of two 
types: the time complexity, which is how much calculation 
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we do, and the space complexity, which is how much 
memory we need. Decreasing the number of inputs always 
decreases both, but how much they decrease depends on 
the particular model and the learning algorithm.

Second, when an input is deemed unnecessary, we 
save the cost of measuring it. For example, in medical 
diagnosis, if it turns out that a certain test is not needed, 
we do not do it, thereby eliminating both the monetary 
cost and the patient discomfort.

Third, simpler models are more robust on small data 
sets; that is, they can be trained with fewer data; or 
when trained with the same amount of data, they have 
smaller variance in their response, which indicates lower 
uncertainty.

Fourth, when data can be explained with fewer fea-
tures, we have a simpler model that is easier to interpret.

Fifth, when data can be represented in few (e.g, two) 
dimensions, it can be plotted and analyzed visually, for 
structure and outliers, which again helps facilitate knowl-
edge extraction from data. A plot is worth a thousand dots, 
and if we can find a good way to display the data, our visual 
cortex can do the rest, without any need for model fitting 
calculation.

There are basically two ways to achieve dimensionality 
reduction: feature selection and feature extraction. In fea-
ture selection, we keep the important features and discard 
the unimportant ones. It is basically a process of subset 
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selection where we want to choose the smallest subset of 
the set of input attributes leading to maximum perfor-
mance. The most widely used method for feature selection 
is the wrapper approach, where we iteratively add features 
until there is no further improvement. The feature selec-
tor is “wrapped around” the basic classifier or regressor 
that is trained and tested with each subset.

In feature extraction, we define new features that are 
calculated from the original features. These newly calcu-
lated features are fewer in number but still preserve the 
information in the original features. Those few synthe-
sized features explain the data better than any of the origi-
nal attributes, and sometimes they may be interpreted as 
hidden or abstract concepts.

In projection methods, each new feature is a linear 
combination of the original features; one such method is 
principal component analysis where we find new features 
that preserve the maximum amount of variance of the 
data. If the variance is large, the data has large spread mak-
ing the differences between the instances most apparent, 
whereas if the variance is small, we lose the differences 
between data instances. The other method, linear discrim-
inant analysis is a form of supervised feature extraction 
where the aim is to find new features that maximize the 
separation between classes.

Whether one should use feature selection or extrac-
tion depends on the application and the granularity of 
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the features. If we are doing credit scoring and have fea-
tures such as customer age, income, profession, and so 
on, feature selection makes sense. For each feature, we 
can say whether it is informative or not by itself. But a 
feature projection does not make sense: what does a lin-
ear combination (weighted sum) of age, income, and pro-
fession mean? On the other hand, if we are doing face 
recognition and the inputs are pixels, feature selection 
does not make sense—an individual pixel by itself does 
not carry discriminative information. It makes more 
sense to look at particular combinations of pixels in defin-
ing a face, as is done by feature extraction; for example, 
a region in image may define a particular type of eye  
or nose.

Nonlinear dimensionality reduction methods go be-
yond a linear combination and can find better features; 
this is one of the hottest topics in machine learning. The 
ideal feature set best represents the (classification or re-
gression) information in the data set using the fewest 
numbers, and it is a process of encoding. It may also be 
considered as a process of abstraction because these new 
features can correspond to higher-level features repre-
senting the data in a more concise manner. In chapter 4, 
we will discuss autoencoder networks and deep learning 
where this type of nonlinear feature extraction is learned 
in artificial neural networks.
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Decision Trees

Previously we discussed if-then rules and one way to learn 
such rules is by decision trees. The decision tree is one of 
the oldest methods in machine learning and though sim-
ple in both training and prediction, it is accurate in many 
domains. Trees use the famous “divide and conquer” strat-
egy popular since Caesar where we divide a complex task—
for example, governing Gaul—into simpler, regional tasks. 
Trees are used in computer science frequently for the 
same reason, namely to decrease complexity, in all sorts 
of applications.

Earlier we covered nonparametric estimation where, as 
you will remember, the main idea is to find a subset of the 
neighboring training examples that are most similar to 
the new query. In k-nearest-neighbor algorithms, we do 
this by storing all the training data in memory, calculating 
one by one the similarity between the new test query and 
all the training instances, and choosing the k most similar 
ones. This is rather a complex calculation when the train-
ing data is large, and it may be infeasible when the data  
is big.

The decision tree finds the most similar training in-
stances by a sequence of tests on different input attributes. 
The tree is composed of decision nodes and leaves; starting 
from the root, each decision node applies a splitting test 
to the input and depending on the outcome, we take one 
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of the branches. When we get to a leaf, the search stops 
and we understand that we have found the most similar 
training instances, and we interpolate from those (see  
figure 6).

Each path from the root to a leaf corresponds to a con-
junction of test conditions in the decision nodes on the path 
and such a path can be written as an if-then rule. That is one 
of the advantages of the decision tree: that a tree can be 
converted to a rule base of if-then rules and that those rules 
are easy to interpret. The tree is trained with a given train-
ing data where splits are placed to delimit regions that have 

No

No

Savings < Y

Income < X

High-risk Low-risk

Low-risk

Yes

Yes

Figure 6  A decision tree separating low- and high-risk customers. This tree 
implements the discriminant shown in figure 3.
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the highest “purity,” in the sense that each region contains 
instances that are similar in terms of their output.

Decision tree learning is nonparametric—we do not 
have a model where the structure is assumed a priori and we 
only update the parameters of that fixed structure; a deci-
sion tree grows as needed and its size depends on the com-
plexity of the problem underlying the data; for a simple task, 
the tree is small, whereas a difficult task grows a large tree.

There are different decision tree models and learning 
algorithms depending on the splitting test used in the 
decision nodes and the interpolation done at the leaves; 
one very popular current approach is the random forest, 
where we train many decision trees on randomly chosen 
different subsets of the training data and we combine their 
predictions by taking a vote.

Trees are used successfully in various machine learn-
ing applications, and together with the linear model, the 
decision tree should be taken as one of the basic bench-
mark methods before any more complex learning algo-
rithm is tried.

Active Learning

In learning, it is critical that the learner also knows what it 
knows and what it does not know. When a trained model 
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makes a prediction, it is helpful if it can also indicate its 
certainty in that prediction.

One easy way to do this is by resampling.
Let us say that we want to be able to predict the price 

of a used car and we have a data set of 100 examples. Let 
us choose randomly 80 examples from that data and using 
those we train our first model. Then we can choose another 
random subset of 80 examples from the original data set 
and train a second model. The two data sets will be simi-
lar but not the same, and so the two fitted models will be 
similar in their predictions but not the same.

We can do this for example ten times and get ten mod-
els. Later on, when we are given a new car, we can give its 
mileage as input to all ten models and get ten predictions. 
They will be slightly different because each one has been 
trained on a slightly different data set. We can then use the 
average of those ten values as our point estimate; we can 
also sort those ten estimates from the smallest to the larg-
est and define an interval, the so-called confidence interval, 
from the minimum to the maximum (in practice, it is bet-
ter to discard the two extreme values at either end and 
use the interval from the second to the ninth). The size of 
that interval is a measure of our predictive uncertainty; if 
it is large we understand that our prediction is very much 
affected by slight changes in the data and hence is not too 
reliable.
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The important point here is that data points are not 
created equal and our data may not be uniform all over 
the input space. For example, we may have a lot of cars in 
the training set with mileage less than 100K but not many 
cars with more.

In the case of estimation, in regions of the input space 
where we have a lot of data, we will have many training 
examples which means that all ten sets will have instances 
from there, which in turn implies that we would expect 
the ten models to make similar predictions in there and 
hence the confidence interval for any input there will be 
small. Where we have few data in the input space, it may 
be possible that there will not be examples in the training 
data of all of the ten models, and hence the predictions of 
the ten models can be expected to vary more and we will 
have a larger confidence interval.

So where the confidence interval is large, the uncer-
tainty is understood to be large, and the model can actively 
ask the supervisor to provide training examples in there. 
This is called active learning. The model generates inqui-
ries by synthesizing new inputs and asks for them to be 
supplied, rather like a student asking a question during a 
lecture.

For example, very early on in artificial intelligence, it 
was realized that in classification the most informative 
examples are those that lie closest to the current estimate 
of the class boundary: a near miss is an instance that looks 
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very much like a positive example but is actually a negative 
example (Winston 1975).

A related research area in machine learning is called 
computational learning theory, where work is done to find 
theoretical bounds for learning algorithms that hold in 
general, independent of the particular learning task. For 
example, for a given model and learning algorithm, we may 
want to know the minimum number of training instances 
needed to guarantee at most a certain error with high 
enough probability—this is called probably approximately 
correct learning (Valiant 1984).

Learning to Rank

Ranking is an application area of machine learning that 
is different from regression or classification, and that is 
sort of between the two. In classification and regression, 
for each instance, we have a desired absolute value for the 
output; in ranking we train on pairs of instances and are 
asked to have the outputs for the two in the correct order.

Let us say we want to learn a recommendation model for 
movies. For this task, the input is composed of the attri-
butes of the movie. The output is a numeric score that is 
a measure of how much we believe that a particular cus-
tomer will enjoy a particular movie. To train such a model, 
we use past ratings by that customer. If we know that the 
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customer liked movie A more than movie B in the past, we 
do our training such that for that customer the estimated 
score for A is indeed a higher value than the estimated 
score for B. Then, later on when we use that model to make 
a recommendation based on the highest scores, we expect 
to choose a movie that is more similar to A than to B.

There is no required numeric value for the score, as we 
have for the price of a used car, for example. The scores 
can be in any range as long as the ordering is correct. The 
training data is not given in terms of absolute values but 
in terms of such rank constraints (Liu 2011).

We can note here the advantage and difference of a 
ranker over a classifier or a regressor. If users rate the mov-
ies they have seen as enjoyed versus not enjoyed, this will 
be a two-class classification problem and a classifier can be 
used, but taste is nuanced, and a binary rating is hard to 
come by. On the other hand, if people rate their enjoyment 
of each movie on a scale of, say, from 1 to 10, this will be a 
regression problem, but such values are difficult to assign. 
It is more natural and easier for people to say of the two 
movies they watched which one they enjoyed more. After 
the ranker is trained with all such pairs, it is expected to 
generate numeric scores satisfying all these constraints.

Ranking has many applications. In search engines, we 
want to retrieve the most relevant documents when given 
a query. When we retrieve and display the current top ten 
candidates, if the user clicks the third one skipping the 
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first two, we understand that the third should have been 
ranked higher than the first and the second. Such click logs 
are used to train rankers.

Bayesian Methods

In certain applications and with certain models, we may 
have some prior belief about the possible values of param-
eters. When we toss a coin, we expect it to be a fair coin or 
close to being fair, so we expect the probability of heads 
to be close to ½; in estimating the price of a car, we expect 
mileage to have a negative effect on the price. Bayesian 
methods allow us to take such prior beliefs into account 
in estimating the parameters.5 The idea in Bayesian estima-
tion is to use that prior knowledge together with the data 
to calculate a posterior distribution for the parameters. Let 
us see an example.

Assume we want to estimate the probability that 
people will click a certain link on our company’s webpage; 
toward that end, we collect a sample of ten visitors and 
find that six of them have clicked on the link. The usual 
approach would be to say that the probability is 0.6 and 
use it for any further calculations and processing based 
on that value.

Now we can see that the actual probability could actu-
ally have been 0.5 and that it was just luck that we had seen 
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six clicks in that particular sample of ten. It is even possible 
(though much less possible) that the actual probability is  
0.1 and that a rare event occurred and we got six clicks. So 
what we can really get from the data is not just one value 
(0.6) but a list of possible values where for each we also have 
an additional value of how well the data supports it; this is 
what we mean by the posterior distribution. Once we have 
such a posterior distribution, we do further calculations 
using all (or a reasonable subset of) possible values and use 
their average, each weighted by how likely that value is.

The Bayesian approach is especially useful when the 
data set is small. If we see 60 clicks in 100 trials, the range 
of probable values around 0.6 will be much smaller.

Though the Bayesian approach is flexible and inter-
esting, it has the disadvantage that except for simple 
scenarios under restrictive assumptions, the necessary 
calculation is too complex. One possibility is that of 
approximation where instead of the real posterior distri-
bution that we cannot easily handle, we use one that is 
similar but manageable. Another possibility is sampling 
where instead of using the distribution itself, we generate 
representative instances from the distribution and make 
our inferences based on them. The popular methods for 
these—namely, variational approximation for the former, 
and Markov chain Monte Carlo (MCMC) sampling for the 
latter—are among important current research directions 
in machine learning.
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The Bayesian approach allows us to incorporate our 
prior beliefs in training. One prior belief is that the under-
lying problem is smooth, which makes us prefer simpler 
models; remember our discussion of Occam’s razor and 
the Kanizsa triangle from chapter 2. In regularization, we 
penalize complexity, and during training, in addition to 
maximizing our fit to the data, we also try to minimize the 
model complexity. While learning, we also get rid of those 
parameters that make the model unnecessarily complex 
and the output too variant. This implies a learning scheme 
that involves not only the adjustment of parameters but 
also changes to the model structure. Or we can go in the 
other direction and add complexity incrementally when 
we suspect we have a model that is too simple for the data.

The use of such nonparametric approaches in Bayesian 
estimation is especially interesting because we are no lon-
ger constrained by some parametric model class, but the 
model complexity also changes dynamically to match the 
complexity of the task in the data (Orbanz and Teh 2010). 
This implies a model of “infinite size,” because it can be as 
complex as we want—it grows when it learns.

One model family that works quite well in many 
domains is the artificial neural network that is inspired 
from the human brain; in the next chapter, we will discuss 
how such networks are organized in layers and how such 

“deep” networks can be trained.





4

NEURAL NETWORKS AND  
DEEP LEARNING

Artificial Neural Networks

Our brains make us intelligent; we see or hear, learn and 
remember, plan and act thanks to our brains. In trying to 
build machines to have such abilities then, our immediate 
source of inspiration is the human brain, just as birds were 
the source of inspiration in our early attempts to fly. What 
we would like to do is to look at how the brain works and 
try to come up with an understanding of how it does what 
it does. But we want to have an explanation that is inde-
pendent of the particular implementation details—this is 
what we called the computational theory when we discussed 
levels of analysis in chapter 1. If we can extract such an 
abstract, mathematical description, we can later imple-
ment it with what we have at our disposal as engineers—
for example, in silicon and running on electricity.
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Early attempts to build flying machines failed until 
we understood the theory of aerodynamics; only then we 
could build airplanes. Today, we see birds and airplanes as 
two different ways of flying—we call them airplanes now, 
not artificial birds, and they can do more than birds can; 
they cover longer distances and carry passengers or cargo. 
The idea is to accomplish the same for intelligence, and we 
start by getting inspired by the brain.

The human brain is composed of a very large num-
ber of processing units, called neurons, and each neuron 
is connected to a large number of other neurons through 
connections called synapses. Neurons operate in parallel 
and transfer information among themselves over these 
synapses. It is believed that the processing is done by the 
neurons and memory is in the synapses, that is, in the way 
the neurons are connected and influence each other.

Research on neural networks as models for analog 
computation—neuron outputs are not discrete, 0 or 1, but 
when they are activated they fire at a frequency which is 
a continuous value—started as early as research on digi-
tal computation (McCulloch and Pitts 1943) but, after the 
quick success and widespread use of digital computers, 
went largely unnoticed for a long time.

In the 1960s, the perceptron model was proposed as 
a model for pattern recognition (Rosenblatt 1962). It is a 
network composed of artificial neurons and synaptic con-
nections, where each neuron has an activation value, and 
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a connection from neuron A to neuron B has a weight that 
defines the effect of A on B. If the synapse is excitatory, 
when A is active it also tries to activate B; if the synapse is 
inhibitory, when A is active it tries to suppress B.

During operation, each neuron sums up the activa-
tions from all the neurons that make a synapse with it, 
weighted by their synaptic weights, and if the total acti-
vation is larger than a threshold value, the neuron “fires” 
and its output corresponds to the value of this activation; 
otherwise the neuron is silent. If the neuron fires, it sends 
its activation value in turn down to all the neurons with 
which it makes a synapse (see figure 7).

The perceptron basically calculates a weighted sum 
before making a decision, and this can be seen as one way 
of implementing a variant of the linear model we discussed 
earlier. Such neurons can be organized as layers where all 
the neurons in a layer take input from all the neurons in 
the previous layer and calculate their value in parallel, and 
these values together are fed to all the neurons in the layer 
that follows—this is called a multilayer perceptron.

Some of the neurons are sensory neurons and take 
their values from the environment, for example, from 
the sensed image, similar to the receptors in the retina. 
These then are given to other neurons that do some more 
processing over them in successive layers as activation 
propagates over the network. Finally, there are the output 



108    chapter 4

Figure 7  An example of a neural network composed of neurons and 
synaptic connections between them. Neuron Y takes its inputs from neurons 
A, B, and C. The connection from A to Y has weight WYA that determines the 
effect of A on Y. Y calculates its total activation by summing the effect of its 
inputs weighted by their corresponding connection weights. If this is large 
enough, Y fires and sends its value to the neurons after it—for example,  
Z—through the connection with weight WZY.

Z
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neurons that make the final decision and carry out the 
actions through actuators—for example, to move an arm, 
utter a word, and so on.

Neural Network Learning Algorithms

In a neural network, learning algorithms adjust the con-
nection weights between neurons. An early algorithm was 
proposed by Hebb (1949) and is known as the Hebbian 
learning rule: the weight between two neurons gets rein-
forced if the two are active at the same time—the synaptic 
weight effectively learns the correlation between the two 
neurons.

Let us say we have one neuron that checks whether 
there is a circle in the visual field and another neuron that 
checks whether there is the digit six, ‘6’, in the visual field. 
Whenever we see a six—or are told that it is a six when 
we are learning to read—we also see a circle, so the con-
nection between them is reinforced, but the connection 
between the circle neuron and, say, the neuron for digit 
seven, ‘7’, is not reinforced because when we see one, we 
do not have the other. So the next time we see a circle 
in the visual field, this will increase the activation of the 
neuron for the digit six but will diminish the activation of 
the neuron for the digit seven, making six a more likely 
hypothesis than seven.
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In some applications, certain neurons in the network 
are explicitly designated as input units and certain of 
them as output units. We have a training set that contains 
a sample of inputs and their corresponding correct output 
values, as specified by a supervisor—for example, in esti-
mating the price of a used car, we have the car attributes 
as the input and their prices as the output. In this case 
of supervised learning, we clamp the input units to the 
input values in the training set, let the activity propagate 
through the network depending on the weights and the 
network structure, and then we look at the values calcu-
lated at the output units.

We define an error function as the sum of the differ-
ences between the actual outputs the network estimates 
for an input and their required values specified by the 
supervisor in the training set; and in neural network train-
ing, for each training example, we update the connection 
weights slightly, in such a way as to decrease the error for 
that instance. Decreasing the error implies that the next 
time we see the same or similar input, estimated outputs 
will be slightly closer to their correct values. Theoretically 
speaking, this is nothing but the good old regression we 
discussed in chapter 2, except that here the model is imple-
mented as a neural network of neurons and connections.

This is one important characteristic of neural net-
work learning algorithms, namely that they can learn 
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online, by doing small updates on the connection weights 
as we see training instances one at a time. In batch learn-
ing, we have the whole data set and do training all at once 
using the whole data. A popular approach today involves 
mini batches, where we use small sets of instances in each  
update.

Currently with data sets getting larger, online learning 
is attractive because it does not require the collection and 
the storage of the whole data; we can just learn by using 
one example or a few examples at a time in a streaming 
data scenario. Furthermore, if the underlying character-
istics of the data change slowly—as they generally do—
online learning can adapt seamlessly, without needing to 
stop, collect new data, and retrain.

What a Perceptron Can and Cannot Do

Though the perceptron was successful in many tasks—
remember that the linear model works reasonably well in 
many domains—there are certain tasks that cannot be 
implemented by a perceptron (Minsky and Papert 1969). 
The most famous of these is the exclusive OR (XOR) 
problem:

In logic, there are two types of OR, the inclusive OR 
and the exclusive OR. In everyday speech, when we say, 
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“To go to the airport, I will take the bus or the train,” what 
we mean is the exclusive OR. There are two cases and only 
one of them can be true at one time. To represent the 
inclusive OR, we use the construct “and/or,” as in “This 
fall, I will take Math 101 and/or Phys 101.” In other words, 
I will take Math 101, Phys 101, or both.

Though the inclusive OR can be implemented by a per-
ceptron, the exclusive OR cannot. It is not difficult to see 
why: if you have two cases, for example, the bus and the 
train, and if you want either to be enough, you need to give 
each of them a weight larger than the threshold so that the 
neuron fires when any one of them is true. But then when 
both of them are true, the overall activation will be twice 
as high and cannot be less than the threshold.

Though it was known at that time that tasks like XOR 
can be implemented using multiple layers of perceptrons, 
it was not known how to train such networks; and the fact 
that the perceptron cannot implement a task as straight-
forward as XOR—which can easily be implemented by a 
few (digital) logic gates—led to disappointment and the 
abandonment of neural network research for a long time, 
except for a few places around the world. It was only in the 
mid-1980s when the backpropagation algorithm was pro-
posed to train multilayer perceptrons—the idea had been 
around since the 1960s and 1970s but had gone largely 
unnoticed—that interest in it was revived (Rumelhart, 
Hinton, and Williams 1986).
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Recurrent Networks for Learning Time

Not all artificial neural networks are feedforward; there 
are also recurrent networks where in addition to connec-
tions between layers, neurons also have connections to 
neurons in the same layer (including themselves), or even 
to neurons back to the layers that precede them. Each 
activation calculation causes a certain delay so the recur-
rent connections act as a short-term memory for contextual 
information and let the network remember the past.

Let us say that input neuron A is connected to neuron 
X and that there is also a recurrent connection from X to 
itself (see figure 8). The effect of this connection is that at 
time t, the value of X will depend on input A at time t and 
will also depend on the value of X at time t – 1 because of 
the recurrent connection from X to itself. In the next time 
step, X at time t + 1 will depend on input A at time t + 1 
and also on X at time t (previously calculated using A at 
time t and X at time t – 1), and so on. In this way, the value 
of X at any time will have depended on all the inputs seen 
until then.

If we define the state of a network as the collection of 
the values of all the neurons at a certain time, recurrent 
connections allow the current state to depend not only 
on the current input but also on the network state in the 
previous time steps calculated from the previous inputs. 
So, for example, if we are seeing a sentence one word at 
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Figure 8  The recurrent connection acts as a short-term memory.  
The value of X depends not only on its immediate inputs A, B, and C, but  
also on its value in the previous time step and the weight WXX of the  
recurrent connection.

a time, the recurrence allows the previous words in the 
sentence to be kept in this short-term memory in a con-
densed and abstract form and hence taken into account 
while processing the current word. The architecture of the 
network and the way recurrent connections are set define 
how far back and in what way the past influences the cur-
rent output.

Recurrent neural networks are used in many tasks 
where the time dimension is important, as in speech or 
language processing, where what we would like to rec-
ognize are sequences. In a translation of text from one 
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language to another, not only the seen input but also the 
generated output is a sequence.

More complex types of recurrent connections are 
also possible. In a long short-term memory (LSTM) unit 
(Hochreiter and Schmidhuber 1997), there is a “forget 
gate” where this type of effect can be turned on or off 
(see figure 9). So depending on where and how the gate is 
turned on and off, the network can be selective as to what 
to remember from the past.

CBA

X
g

Figure 9  The “forget gate” g is another unit that sees the input A, B, and 
C and its output decides whether the activation passes or not through its 
associated recurrent connection. If g is 1, the gate is closed and the past is 
taken into account; if g is 0, the recurrent connection is cut and the past value 
of X does not have any effect on the next value, that is, the unit has effectively 
forgotten the past.
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For example, compare the following two sentences:

“The man entered the room, looked around, and took 
off his jacket.”

“The woman entered the room, looked around, and 
took off her jacket.”

Whether the possessive pronoun is “his” or “her” 
depends on the gender of the subject, that is, whether 
the person entering the room is a man or woman. So in 
generating such a sentence one word at a time (e.g., when 
generating a translation), the network should store that 
gender information when it processes the subject word 
at the beginning of the sentence and keep it intact (unaf-
fected by the following words that are irrelevant for this 
purpose) until it generates the correct pronoun.

Connectionist Models in Cognitive Science

Artificial neural network models are known as connectionist 
or parallel distributed processing (PDP) models in cognitive 
psychology and cognitive science (Feldman and Ballard 
1982; Rumelhart and McClelland and the PDP Research 
Group 1986). The idea is that neurons correspond to con-
cepts and that the activation of a neuron corresponds to 
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our current belief in the truth of that concept. Connec-
tions correspond to constraints or dependencies between 
concepts: A connection has a positive weight and is excit-
atory if the two concepts occur simultaneously—for 
example, between the neurons for circle and ‘6’—and has 
a negative weight and is inhibitory if the two concepts are 
mutually exclusive—for example, between the neurons 
for circle and ‘7’.

Neurons whose values are observed—for example, by 
sensing the environment—affect the neurons they are 
connected to, which in turn affect the neurons they are con-
nected to, and so on. This activity propagation throughout 
the network results in a state of neuron outputs that satis-
fies the constraints defined by the connections.

The basic idea in connectionist models is that intel-
ligence is an emergent property and high-level tasks, such 
as recognition or association between patterns, arise 
automatically as a result of this activity propagation by 
the rather elemental operations of interconnected simple 
processing units. Similarly, learning is done at the connec-
tion level through simple operations, for instance, accord-
ing to the Hebbian rule, without any need for a higher-level 
programmer.

Connectionist networks care about biological plausi-
bility but are still abstract models of the brain; for example, 
it is very unlikely that there is actually a neuron for every 
concept in the brain—this is the grandmother cell theory, 
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which states that I have a neuron in my brain that is acti-
vated only when I see or think of my grandmother—that 
is a local representation. It is known that neurons die and 
new neurons are born in the brain, so it makes more sense 
to believe that the concepts have a distributed representa-
tion on a cluster of neurons, with enough redundancy for 
concepts to survive despite physical changes in the under-
lying neuronal structure.

Neural Networks as a Paradigm for Parallel Processing

Since the 1980s, computer systems with thousands of pro-
cessors have been commercially available. The software for 
such parallel architectures, however, has not advanced as 
quickly as hardware. The reason for this is that almost all 
our theory of computation up to that point was based on 
serial, single-processor machines. We are not able to use 
the parallel machines in their full capacity because we can-
not program them efficiently.

There are mainly two paradigms for parallel processing. 
In single instruction, multiple data (SIMD) machines, all 
processors execute the same instruction but on different 
pieces of data. In multiple instruction, multiple data (MIMD) 
machines, different processors may execute different 
instructions on different data. SIMD machines are easier 
to program because there is only one program to write. 
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However, problems rarely have such a regular structure 
that they can be parallelized over a SIMD machine. MIMD 
machines are more general, but it is not an easy task to 
write separate programs for all the individual processors; 
additional problems arise that are related to synchroniza-
tion, data transfer between processors, and so forth. SIMD 
machines are also easier to build, and machines with more 
processors can be constructed if they are SIMD. In MIMD 
machines, processors are more complex, and a more com-
plex communication network must be constructed for the 
processors to exchange data arbitrarily.

Assume now that we can have machines where pro-
cessors are a little bit more complex than SIMD proces-
sors but not as complex as MIMD processors. Assume that 
we have simple processors with a small amount of local 
memory where some parameters can be stored. Each pro-
cessor implements a fixed function and executes the same 
instructions as SIMD processors; but by loading different 
values into its local memory, each processor can be doing 
different things and the whole operation can be distributed 
over such processors. We will then have what we can call 
neural instruction, multiple data (NIMD) machines, where 
each processor corresponds to a neuron, local parameters 
correspond to its synaptic weights, and the whole struc-
ture is a neural network. If the function implemented in 
each processor is simple and if the local memory is small, 
then many such processors can be fit on a single chip.
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The problem now is to distribute a task over a network 
of such processors and to determine the local parameter 
values. This is where learning comes into play: We do not 
need to program such machines and determine the param-
eter values ourselves if such machines can learn from 
examples.

Thus, artificial neural networks are a way to make use 
of the parallel hardware we can build with current tech-
nology and—thanks to learning—they need not be pro-
grammed. Therefore, we also save ourselves the effort of 
programming them.

Hierarchical Representations in Multiple Layers

Before, we mentioned that a single layer of perceptron can-
not implement certain tasks, such as XOR, and that such 
limitations do not apply when there are multiple layers. 
Actually, it has been proven that the multilayer perceptron 
is a universal approximator, that is, it can approximate any 
function with desired accuracy given enough neurons—
through training it to accomplish that is not always 
straightforward.

The perceptron algorithm can train only single-layer 
networks, but in the 1980s the backpropagation algo-
rithm was invented to train multilayer perceptrons, and 
this caused a flurry of applications in various domains 
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significantly accelerating neural network research in 
many fields, from cognitive science to computer science 
and engineering.

The multilayer network is intuitive because it cor-
responds to layers of operation where we start from the 
raw input and incrementally perform a more complicated 
transformation, until we get to the output.

For example, in image recognition, we have image pix-
els as the basic input and as input to the first layer. The 
neurons in the next layer combine these to detect basic 
image descriptors such as strokes and edges of different 
orientations. A later layer combines these to form longer 
lines, arcs, and corners. Layers that follow combine them 
to learn more complex shapes such as circles, squares, and 
so on. These in turn are combined with some more layers 
of processing to represent the objects we want to learn, 
such as faces or handwritten characters.

Each neuron in a layer defines a more complex feature 
in terms of the simpler patterns detected in the layer below 
it. These intermediate feature-detecting units are called 
hidden units because they correspond to hidden attributes 
not directly observed but are defined in terms of what is 
observed. These successive layers of hidden units corre-
spond to increasing layers of abstraction, where we start 
from raw data such as pixels and end up in abstract con-
cepts such as a digit or a face.
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It is interesting to note that a similar mechanism 
seems to be operating in the visual cortex. In their experi-
ments on cats, Hubel and Wiesel, who were later awarded 
the 1981 Nobel Prize for their work on visual neurophysi-
ology, have shown that there are simple cells that respond 
to lines of particular orientations in particular positions 
in the visual field, and these in turn feed to complex and 
hypercomplex cells for detecting more complicated shapes 
(Hubel 1995)—though not much is known about what 
happens in later layers.

Imposing such a structure on the network implies 
making assumptions, such as dependencies, about the 
input. For example, in vision we know that nearby pixels 
are correlated and there are local features like edges and 
corners. Any object, such as a handwritten digit, may be 
defined as a combination of such primitives. We know 
that because the visual scene changes smoothly, nearby 
pixels tend to belong to the same object, and where there 
is sudden change—an edge—is informative because it  
is rare.

Similarly, in speech, locality is in time, and inputs 
close in time can be grouped as speech primitives. By com-
bining these primitives, longer utterances, namely speech 
phonemes, can be defined. They in turn can be combined 
to define words, and these in turn can be combined as 
sentences.
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In such cases, when designing the connections 
between layers, units are not connected to all of the input 
units because not all inputs are dependent. Instead, we 
define units that define a window over the input space and 
are connected to only a small local subset of the inputs. 
This decreases the number of connections and therefore 
the number of parameters to be learned. Such a structure 
is called a convolutional neural network where the opera-
tion of each unit is considered to be a convolution—that 
is, a matching—of its input with its weight (Le Cun et al. 
1989). An earlier similar architecture is the neocognitron 
(Fukushima 1980).

The idea is to repeat this in successive layers where 
each layer is connected to a small number of local units 
below. Each layer of feature extractors checks for slightly 
more complicated features by combining the features 
below in a slightly larger part of the input space, until we 
get to the output layer that looks at the whole input. Fea-
ture extraction also implements dimensionality reduction 
because although the raw attributes that we observe may 
be many in number, the important hidden features that 
we extract from data and that we use to calculate the out-
put are generally much fewer.

This multilayered network is an example of a hierarchi-
cal cone where features get more complex, abstract, and 
fewer in number as we go up the network until we get to 
classes (see figure 10).



126    chapter 4

“livre” “read”

“book” “bell”

“I”“o”

Figure 10  A very simplified example of hierarchical processing. At the 
lowest level are pixels, and they are combined to define primitives such 
as arcs and line segments. The next layer combines them to define letters, 
and the next combines them to define words. The representation becomes 
more abstract as we go up. Continuous lines denote positive (excitatory) 
connections, and dashed lines denote negative (inhibitory) connections. 
The letter o exists in “book” but not in “bell.” At higher levels, activity may 
propagate using more abstract relationships such as the relationship  
between “book” and “read,” and in a multilingual context, between “book” 
and “livre,” the French word for book.
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Deep Learning

In computer vision in the last half century, significant 
research has been done to find the best features for accu-
rate classification, and many different image filters, trans-
forms, and convolutions have been proposed to implement 
such feature extractors manually.

Though these approaches have had some success, 
learning algorithms are achieving higher accuracy recently 
with big data and powerful computers. With few assump-
tions and little manual interference, structures similar 
to the hierarchical cone are being automatically learned 
from large amounts of data. These learning approaches are 
especially interesting in that, because they learn, they are 
not fixed for any specific task, and they can be used in a 
variety of applications. They learn both the hidden feature 
extractors and also how they are best combined to define 
the output.

This is the idea behind deep neural networks where, 
starting from the raw input, each hidden layer combines 
the values in its preceding layer and learns more compli-
cated functions of the input. The fact that the hidden unit 
values are not 0 or 1 but continuous allows a finer and 
graded representation of similar inputs (For example, if 
what we see in a small patch looks like a corner but is not 
exactly, the output of the corner-detecting hidden unit in 
that region will be, say, 0.7). Successive layers correspond 
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to more abstract representations until we get to the final 
layer where the outputs are learned in terms of these most 
abstract concepts.

We saw an example of this in the convolutional neural 
network where starting from pixels, we get to edges, and 
then to corners, and so on, until we get to a digit. In such a 
network, some user knowledge is necessary to define the 
connectivity and the overall architecture. Consider a face 
recognizer network where inputs are the image pixels. If 
each hidden unit is connected to all the pixels, the net-
work has no knowledge that the inputs are face images or 
even that the input is two-dimensional—the input is just 
a set of values. Using a convolutional network where hid-
den units are fed with localized two-dimensional patches 
is a way to feed this locality information such that correct 
abstractions can be learned.

In deep learning, the idea is to learn feature levels of 
increasing abstraction with minimum human contribu-
tion (Goodfellow et al. 2016; LeCun, Bengio, and Hinton 
2015; Schmidhuber 2015). This is because in most appli-
cations, we do not know what structure there is in the 
input, especially as we go up and the corresponding con-
cepts become “hidden.” So, any sort of dependency should 
be automatically discovered during training from a large 
sample of examples. It is this extraction of hidden depen-
dencies, or patterns, or regularities from data that allows 
abstraction and learning general descriptions.
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In chapter 2 when we discussed the example of fit-
ting a model to a sequence of numbers, we saw that as the 
sequence gets more complex, we need more flexible mod-
els to be able to make a fit. Learning basically is a process 
of matching the complexity of the learner model to that of 
the task underlying the data. The representational capabil-
ity of a neural network depends on its number of layers 
and units in each layer, so, as the task that we want to 
learn gets complex, we need deeper networks with more 
layers and units.

Training a network with multiple hidden layers is dif-
ficult and slow because the error at the output needs to be 
propagated back to update the weights in all the preced-
ing layers, and there is interference when there are many 
parameters. In a convolutional network, each unit is fed to 
only a small subset of the units before and feeds to only a 
small subset of units after, so there is less interference and 
training can be done faster.

Deep learning methods are attractive mainly because 
they need less manual help. We do not need to craft the 
right features or the suitable transformations. Once we 
have data—and today we have “big” data—and sufficient 
computation available—and today we have data centers 
with thousands of processors—we just wait and let the 
learning algorithm discover all that is necessary by itself.

Another important factor that fueled deep learning 
research in recent years is the availability of software 
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libraries that allow coding deep neural networks very 
easily. Those libraries can also efficiently utilize parallel 
hardware and thus permit testing different network archi-
tectures very quickly.

The idea of multiple layers of increasing abstraction 
that underlies deep learning is intuitive. Not only in 
vision—in handwritten digits or face images—but also in 
many applications we can think of such layers of abstrac-
tion. Discovering these abstract representations is useful, 
not only for prediction but also because abstraction allows 
a better description and understanding of the problem.

Learning Hidden Representations

A special type of multilayer network is the autoencoder, 
where the desired output is set to be equal to the input, 
and the network has a hourglass shape with fewer hidden 
units in the intermediate layers than there are in the input 
and output. Such a network is composed of two parts 
where the first part, from the input to the hidden layer, 
implements an encoder stage where a high-dimensional 
input is compressed to be represented by the values of the 
fewer hidden units. The second part, from the hidden layer 
to the output, implements a decoder stage that takes that 
low-dimensional representation in the hidden layer and 
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reconstructs the higher dimensional input back again at 
the output (see figure 11).

For the network to be able to reconstruct the input 
at its output units, those few hidden units that act as a 
bottleneck should be able to extract the features that pre-
serve information maximally. The autoencoder is unsuper-
vised; those hidden units learn themselves without any 
supervision to find a good encoding of the input, a short, 
compressed description, extracting the most important 
features and ignoring what is irrelevant, namely, noise.

Output

Input

Code

Decoder

Encoder

...

...

Figure 11  The autoencoder is a neural network where there are fewer 
hidden units than input units, and the output is set to be equal to the input. 
The encoder needs to learn to generate a short, compressed “code” in its 
hidden layer that should be sufficient for the decoder to be able to reconstruct 
the input back at the output.
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Researchers have proposed extensions and different 
uses of the basic autoencoder. For example, the autoen-
coder shown in figure 11 has only one layer of connections 
between the input and the hidden units, but in practice 
in a deep autoencoder, there may be multiple layers in the 
encoder (with their structure mirrored in the decoder) to 
be able to learn more abstract hidden representations; for 
example, if we have images as the input, the first few lay-
ers of the encoder are typically convolutional.

An interesting variant is the noisy autoencoder where 
the aim is to learn a hidden representation that is robust 
to perturbations of the input. Let us say we have face 
images and we see that some people wear glasses that 
occlude their eyes, which can mess up recognition. What 
we do is we use an autoencoder where we take two images 
of the same person as input, one with and one without 
glasses, and for both, we set the image without glasses 
as the desired output. To be able to generate the same 
output for both, the encoder should learn to generate 
the same code for both, meaning that it should learn to 
discard the occluding effect of the glasses. Such a repre-
sentation generated by the encoder can then be given 
to a face recognizer which can make decisions despite  
glasses.

This can be done with any perturbation of the input 
that we want to get invariance to, for example, small rota-
tions or translations. That is, if you have an input x and its 
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perturbed version x* and for both, we set x as the desired 
output, the network, assuming that it is big enough and 
that it sees enough training examples, learns to generate 
a hidden representation that is invariant to that type of 
perturbation.

The general idea is that if we have two different inputs 
for which we set the same desired output, the encoder 
will be forced to learn to generate the same, or very simi-
lar codes for the two. One application of this is in learn-
ing word representations in natural language processing. 
This is a topic where the need for good feature extractors, 
that is, good hidden representations, is most apparent. 
Researchers have worked on predefined databases, called 
ontologies, for representing relationships between words 
in a language and such databases work with some success; 
but again it turned out that the best way is to learn such 
relationships from a lot of data.

In the word2vec network which has the same architec-
ture as an autoencoder, the output is a word and the input 
is a word in its context, that is, one of the words that are 
nearby in the same sentence (Mikolov et al. 2013). The 
result of such a training is that if two words appear in the 
same or very similar contexts, the encoder will generate 
similar codes for them.

For example, consider the following sentence:

“Visitors to Paris will enjoy its numerous museums.”
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It is highly possible that if we go through a very large 
corpus of sentences, we will also find very similar sen-
tences but with “Berlin” instead of “Paris,” or “Rome,” and 
so on. We will have many sentences about cities, which are 
all almost the same, the only difference being the name 
of the city. This will make codes (encoder outputs) for all 
these cities to be similar because the same context words 
need to be decoded from them.

Now consider this sentence:

“The French foreign minister has returned to Paris.”

Again, we will have many similar sentences with “Ger-
man” instead of “French” and this time “Berlin” instead 
of “Paris.” This will cause similar codes to be generated for 

“French” and “German,” but also the representational rela-
tionship between “German” and “Berlin” will be the same 
as the one between “French” and “Paris.” This leads to what 
is called vector algebra: Because codes are numbers, we can 
do arithmetic on them.

Let us say vec(“Paris”) denotes the learned code for 
“Paris” (see figure 12). After training, we expect vec(“Paris”) 
and vec(“Berlin”) to be nearby, and also vec(“French”) and 
vec(“German”) to be nearby but in some other part of 
the code space, but we expect also the relationships to be 
similar. That is, we expect vec(“German”) – vec(“Berlin”) 
to be very similar to vec(“French”) – vec(“Paris”), so much 
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so that if we calculate vec(“German”) – vec(“Berlin”) + 
vec(“Paris”), we will get a code very close to vec(“French”).

End-to-End Learning

In many applications, the processing can be viewed as an 
encoder-decoder structure that we have with the autoen-
coder discussed earlier.

Consider machine translation. Starting with an 
English sentence, in multiple levels of processing and 

“German”

“Berlin”

“French”

“Paris”

Figure 12  In the code space learned by word2vec, cities form one cluster 
and the adjectives denoting the country of origin form another cluster in 
some other part of the space. The relative positions are also expected to 
be very similar so that we can do vector algebra: We expect vec(“German”) 
–vec(“Berlin”) + vec(“Paris”) to be close to vec(“French”).
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abstraction that are learned automatically from a very 
large English corpus to code the lexical, syntactic, and 
semantic rules of the English language, we would get 
to the most abstract representation. Now consider the 
same sentence in French. The levels of processing learned 
this time from a French corpus would be different, but if 
the two sentences mean the same, at the most abstract, 
language-independent level, they should have very similar 
representations.

Language understanding is a process of encoding 
where from a given sentence, we extract this high-level 
abstract representation, and language generation is a pro-
cess of decoding, where we synthesize a natural language 
sentence from such a high-level representation. In trans-
lation, we encode in the source language and decode in 
the target language. In a dialogue system, we first encode 
the question to an abstract level and process it to form a 
response in the abstract level, which we then decode as the 
response sentence.

The advantage of such a structure is that learning is 
end to end. We only specify the input to the encoder and 
the desired output at the very end of the decoder; it is 
enough to just provide a very large data set of input and 
output pairs, and any transformation needed in between 
is automatically learned by the many hidden layers of a 
deep network. Learning not only adjusts the parameters 
of the encoder and the decoder but also specifies the 
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intermediate code between the two modules; this inter-
mediate code is the representation of the input best suited 
to generate the corresponding output.

There are many interesting applications of deep neu-
ral networks trained end to end, and they typically have 
this structure. There is the early module that analyzes the 
input and transforms it into an intermediate representa-
tion and the later module learns to synthesize the correct 
output from that intermediate representation.

One example is the show-and-tell deep architecture 
that learns to generate captions for images (Vinyals et al. 
2014). The encoder is a convolutional network that takes 
an image and analyzes it in its many levels to generate 
a code that summarizes the content of the image. The 
decoder is a recurrent network that generates the caption 
one word at a time from this code. The whole structure is 
trained end to end, from a large set of example pairs of 
images and manually provided captions.

Another example is the deep neural network that 
learns to play Atari games (Mnih et al. 2015). The input 
is the game screen and the output is the correct joystick 
action. The network has early convolutional layers that 
analyzes the image to extract the best features for decid-
ing on the right action and the later, fully connected layers 
generate the action based on those.

It is also possible to use a network trained on one task 
to help solve another task, this is called transfer learning. 
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Let us say we want to do face recognition, but our data 
set is relatively small. Let us assume that we already have 
a very deep convolutional network trained on some very 
large image data set. What we do is we take the first few 
layers of that larger network and copy them to act as early 
layers in our face recognition network. If we expect the 
basic features necessary for the large problem to be also 
useful for face recognition, it makes sense to do this. We 
only train the later layers of the face recognition network, 
which means that there will be fewer parameters, and we 
can train those using a smaller data set.

Generative Adversarial Networks

The generative adversarial network (GAN) is actually com-
posed of two networks, a generator G and a discriminator 
D (Goodfellow et al. 2014). The aim is to learn a genera-
tor; D is only there to train G. Both G and D are typically 
deep neural networks, but GAN is a general strategy for 
training that is independent of how the two learners are 
implemented.

The task of a generator is different from that of a 
regressor or a classifier. Let us say we have a training set 
of faces. What we would like to do is to learn the struc-
ture of faces from this data so well that we can generate a 
new face when we want. The output will be an image that 
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looks like a face, it will have hair on top, eyes and nose 
suitably placed with respect to each other, the face should 
be symmetric, and so on, and all those constraints are to 
be learned from the data. Again, we want generalization, 
we do not want to generate a face already in the training 
set but we want the new image to be the face of a person 
outside of the training set; it will be the face of a person 
who does not even exist. Or let us say we have a training 
set of Bach chorales and we want to train a generator from 
those so that it can spit out a new chorale when we want.

In GAN, the generator takes a random input and 
transforms it into an instance, for example, a face image 
or a chorale (see figure 13). Different random inputs gen-
erate different instances. The input z has some predefined 
distribution and G maps each z to a candidate x. What 
G does is that it takes the distribution of z as input and 
stretches, translates, rotates, etc. it in its many successive 
layers such that its output looks as much as possible to the 
distribution of x.

Those instances that are generated by G are labelled as 
“fake.” We also have a training set of actual faces/chorales 
and they are labelled as “true.” D is a two-class classifier 
that is trained to separate fakes from true instances. G is 
like a forger that paints fake Rembrandts and D is like an 
art expert who is good at spotting fake Rembrandts.

G is trained to generate fakes that will be classified as 
true by D. The two are trained together; as D gets better, G 
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will use that information to understand what D classifies 
as true and will learn to generate fakes similar to those. D 
will in turn learn to tell these apart which in turn will force 
G to generate even better fakes, and so on.

GANs are one of the most popular research topics 
in machine learning these days, with very impressive 
results.1 One major problem with GAN is that because 
there are two networks, training is more difficult; another 
problem is that the goodness of a generator is still largely 
evaluated manually, so GAN currently is mostly used in 

0 (fake)

0/1

1 (true)

G

D

z

x

Figure 13  In the generative adversarial network, G is the generator that 
transforms a random z to a candidate x, but because it is generated it is called 
a “fake” instance. We also have the “true” x that are valid instances drawn 
from a training set. D is trained to separate fakes from true instances as well 
as possible; G is trained to generate fakes so well that D will classify them  
as true.
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image generation tasks where such evaluation is done 
manually.

Until now, we have talked about supervised learning 
where there is an input and an output, and the aim is to 
learn the mapping from the input to the output. In the 
next chapter, we will discuss unsupervised learning where 
there is no explicit output, and the aim is to learn the regu-
larity in the input space, to learn what type of things hap-
pen frequently.





5

LEARNING CLUSTERS AND 
RECOMMENDATIONS

Finding Groups in Data

Previously we covered supervised learning where there is 
an input and an output—for example, car attributes and 
price—and the aim is to learn a mapping from the input to 
the output. A supervisor provides the correct values, and 
the parameters of a model are updated so that its output 
gets as close as possible to these desired outputs.

We are now going to discuss unsupervised learning, 
where there is no predefined output, and hence no such 
supervisor; we have only the input data. The aim in unsu-
pervised learning is to find the regularities in the input, 
to see what normally happens. There is a structure to the 
input space such that certain patterns occur more often 
than others, and we want to see what generally happens 
and what does not.
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One method for unsupervised learning is clustering, 
where the aim is to find clusters or groupings of input; in 
statistics, these are called mixture models.

In the case of a company, the customer data contains 
demographic information, such as age, gender, zip code, 
and so on, as well as past transactions with the company. 
The company may want to see the distribution of the pro-
file of its customers, to see what type of customers fre-
quently occur. In such a case, a clustering model allocates 
customers similar in their attributes to the same group, 
providing the company with natural groupings of its cus-
tomers; this is called customer segmentation (see figure 
14). Once such groups are found, the company may decide 
strategies, for example, services and products, specific to 
different groups; this is known as customer relationship 
management (CRM).

Such a grouping also allows the company to identify 
those who are outliers, namely, those who are different 
from other customers, which may imply a niche in the 
market that can be further exploited by the company, or 
those customers who require further investigation, for 
example, churning customers.

We expect to see regularities and patterns repeated 
with minor variations in many different domains. Detect-
ing them as primitives and ignoring the irrelevant varia-
tions is also a way of doing compression. For example, 
in an image, the input is made up of pixels, but we can 
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identify regularities by analyzing repeated image pat-
terns, such as, texture, objects, and so forth. This allows 
a higher-level, simpler, and more useful description of the 
scene and achieves better compression than compressing 
at the pixel level. A scanned document page does not have 
random on/off pixels but bitmap images of characters; 
there is structure in the data, and we make use of this 
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Figure 14  Clustering for customer segmentation. For each customer, shown 
by a circle, we have the income and savings information. Here, we see that 
there are three customer segments. Such a grouping allows us to understand 
the characteristics of the different segments—for example, the segment 
on the lower left is that of customers with low income and low savings—so 
that we can define different interactions with each segment; this is called 
customer relationship management.
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redundancy by finding a shorter description of the data in 
terms of strokes of different orientations. Going further, 
if we can discover that those strokes combine in certain 
ways to make up characters, we can use just the code of a 
character, which is shorter than its image.

In document clustering, the aim is to group similar doc-
uments. For example, news reports can be subdivided into 
those related to politics, sports, fashion, arts, and so on. 
We can represent the document as a bag of words using a 
lexicon that reflects such document types, and then docu-
ments are grouped depending on the number of shared 
words. It is of course critical how the lexicon is chosen.

Unsupervised learning methods are also used in bio-
informatics. DNA in our genome is the “blueprint of life” 
and is a sequence of bases, namely, A, G, C, and T. RNA is 
transcribed from DNA, and proteins are translated from 
RNA. Proteins are what the living body is and does. Just 
as DNA is a sequence of bases, a protein is a sequence of 
amino acids (as defined by bases). One application area of 
computer science in molecular biology is alignment, which 
is matching one sequence to another. This is a difficult 
string-matching problem because strings may be quite 
long, there are many template strings to match against, 
and there may be deletions, insertions, or substitutions.

Clustering is used in learning motifs, which are 
sequences of amino acids that occur repeatedly in pro-
teins. Motifs are of interest because they may correspond 
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to structural or functional elements within the sequences 
they characterize. The analogy is that if the amino acids 
are letters and proteins are sentences, motifs are like 
words, namely, a string of letters with a particular mean-
ing occurring frequently in different sentences.

Clustering may be used as an exploratory data analysis 
technique where we identify groups naturally occurring 
in the data. We can then, for example, label those groups 
as classes and later on try to classify them. A company 
may cluster its customers and find segments, and then 
toward a certain aim—for example, churning—can label 
them and train a classifier to predict the behavior of new 
customers. But the important point is that there may 
be a cluster or clusters that no expert could have fore-
seen, and that is the power of unsupervised data-driven  
analysis.

Sometimes a class is made up of multiple groups. Con-
sider the case of optical character recognition. There are 
two ways of writing the digit seven; the American version 
is ‘7’, whereas the European version has a horizontal bar 
in the middle (to tell it apart from the European ‘1’, which 
keeps the small stroke on top in handwriting). In such a 
case, when the sample contains examples from both con-
tinents, the class for seven should be represented as the 
union/disjunction/mixture of two groups.

A similar example occurs in speech recognition where 
the same word can be uttered in different ways, due to 
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differences in pronunciation, accent, gender, age, and 
so on—“I say to-may-to, you say to-mah-to.” Thus when 
there is not a single, universal way, all these different ways 
should be represented as equally valid alternatives to be 
statistically correct.

Clustering algorithms group instances in terms of 
their similarities calculated using their input representa-
tion, which is a list of input attributes, and the similarity 
between instances is measured by combining similarities 
in these attributes. In certain applications, we can define a 
similarity measure between instances directly, in terms of 
the original data structure, without explicitly generating 
such a list of attributes and calculating similarities over 
them.

Consider clustering Web pages. In addition to the text 
field, we can also use the similarity of meta (or header) 
information such as titles or keywords, or the number of 
common Web pages that link to or are linked from those 
two. This gives us a much better similarity measure than 
what is calculated using the bag of words representation 
on the text of the Web pages. Using a similarity measure 
that is better suited to the application—if one can be 
defined—leads to better clustering results; this is the basic 
idea in spectral clustering.

Such application-specific similarity representations 
are also popular in supervised learning applications typi-
cally grouped under the name kernel function. The support 
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vector machine (Vapnik 1998) is one such learning algo-
rithm used for both classification and regression.

It is also possible to do hierarchical clustering, where 
instead of a flat list of clusters, we generate a tree structure 
with clusters at different levels of granularity and clusters 
higher in the tree are subdivided into smaller clusters 
(see figure 15). We are familiar with such trees of clusters 
from studies in biology—most famously, the taxonomy by 

a b c d e
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Figure 15  Example of hierarchical clustering. On the left, we have five 
instances, a to e, represented in two dimensions; these may for example be 
five customers and the two axes may be two attributes, such as income and 
savings. Closest instances are merged iteratively to define larger clusters and 
the structure can be visualized as a tree, as shown in the right. The advantage 
of such an approach is that we get different clustering solutions at different 
levels of granularity: At one extreme (where we have high tolerance to 
distance between instances), we have one cluster containing all five instances; 
at the other extreme (where we have very low tolerance), we have five clusters 
each containing one instance. One intermediate solution has three clusters, 
{a, b}, {c}, and {d, e}; this is what we get if our tolerance is less than the 
distance between c and d.
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Linnaeus—or human languages. One explanation of the 
splitting up of clusters into smaller clusters is due to phy-
logeny, that is, to evolutionary changes—small mutations 
are gradually accumulated over time until a species (or a 
language) splits into two—but in other applications, the 
reason of similarity may be different.

The aim in clustering in particular, or unsupervised 
learning in general, is to find structure in the data. In the 
case of supervised learning (e.g., in classification), this 
structure is imposed by the supervisor who defines the 
different classes and labels the instances in the training 
data by these classes. This additional information pro-
vided by the supervisor is of course useful, but we should 
always make sure that it does not become a source of bias 
or impose artificial boundaries. There is also the risk that 
there is error in labeling, which is called “teacher noise.”

Unsupervised learning is an important research 
area because unlabeled data is a lot easier and cheaper 
to find. For speech recognition, a talk radio station is a 
source of unlabeled speech data; spoken speech is not a 
random sequence of sounds, but we have particular sound 
sequences repeated frequently, which are the words in that 
language. The idea is to extract the basic characteristics 
from unlabeled data and learn what is typical, which can 
then later be labeled for different purposes. A baby spends 
their first few years looking around when they see things, 
objects, faces repeatedly under a variety of conditions, 
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during which presumably they learn their basic feature 
extractors and how they typically combine to form objects. 
Later on, when that baby learns language, they learn the 
names for those.

Recommendation Systems

In chapter 1, we discussed recommendation systems for pre-
dicting customer behavior as an application of machine 
learning. Given a large data set of customer transactions, 
we can find association rules of the form, “People who buy X 
are also likely to buy Y.” Such a rule implies that among the 
customers who buy X, a large percentage have also bought 
Y. So, if we find a customer who has bought X but has not 
bought Y, we can target them as a potential Y customer. X 
and Y can be products, authors, cities to be visited, videos to 
be watched, and so on; we see many examples of this type of 
recommendation every day, especially while surfing online.

Though this targeting approach is used frequently, 
and efficient algorithms have been proposed to learn such 
rules from very large data sets, interesting algorithms that 
make use of generative models are being proposed these 
days.

Remember that while constructing a generative model, 
we think about how we believe the data is generated. In 
customer behavior therefore, we consider the causes that 
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affect this behavior. We know that people do not buy 
things at random. Their purchases depend on a number 
of factors, such as their household composition—that is, 
how many people they live with, their gender, ages—and 
their income, their taste (which in turn is a result of other 
factors such as the place of origin), and so on. Though 
some companies have loyalty cards and collect some of 
this information, in practice, most of these factors are 
not known, are hidden, and need to be inferred from the 
observed data.

Note, however, that even if we have some idea about 
what such factors, an overreliance on them can be mis-
guided because they are often wrong or incomplete; there 
may also be factors that we cannot immediately think of 
or factors that are not as important as we think, which is 
why it is always best to learn (discover) them from data.

Extracting such hidden causes will build a much bet-
ter model than trying to learn associations among prod-
ucts. For example, a hidden factor may be “baby at home,” 
which will lead to the purchase of different items such as 
diapers, milk, baby formula, wipes, and so on. So instead 
of learning association rules between pairs or triples of 
these items, if we can estimate the hidden baby factor 
based on past purchases, this will trigger an estimation of 
whatever it is that has not been bought yet.

In practice, there are many such factors; each cus-
tomer is affected (or defined) by a number of these, and 
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each factor triggers a subset of the products. The factor 
values are not 0 or 1 but continuously valued, and this dis-
tributed representation provides a richness when it comes 
to representing customer instances.

This approach aims to find structure by decomposing 
data into two parts. The first one, the mapping between 
customers and factors, defines a customer in terms of 
the factors (with different weights). The second one, the 
mapping between factors and products, defines a factor in 
terms of the products (with different weights). In math-
ematics, we model data using matrices, which is why this 
approach is called matrix decomposition, or sometimes ten-
sor decomposition, tensors being matrices with more than 
two dimensions.

Such a generative approach with hidden factors makes 
sense in many other applications. Let us take the case of 
movie recommendations (see figure 16). We have custom-
ers who have rented a number of movies and we have a 
score for each movie they watched, and from those we 
want to make a recommendation.

The first characteristic of this problem is that we have 
many customers and many movies, but the data is sparse. 
Every customer has watched only a small percentage of 
the movies, and most movies have been watched by only 
a small percentage of the customers. Based on these facts, 
the learning algorithm needs to be able to generalize and 
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predict successfully, even when new movies or new cus-
tomers are added to the data.

In this case too, we can think of hidden factors, such as 
the age and gender of the customer, which makes certain 
genres, such as action, comedy, and so on, a more likely 
choice. Using decomposition, we can define each customer 
in terms of such factors (in different proportions), and 
each such factor triggers certain movies (with different 
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Figure 16  Matrix decomposition for movie recommendations. Each row of 
the data matrix X contains the scores given by one customer for the movies, 
most of which will be missing (because the customer hasn’t watched that 
movie). It is factored into two matrices F and G where each row of F is one 
customer defined as a vector of factors and each row of G defines the effect of 
one factor over the movies; each column of G is one movie defined in terms of 
the factors. The number of factors is typically much smaller than the number 
of customers or movies; in other words, it is the number of factors that 
defines the complexity of the data, named the rank of the data matrix X.
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probabilities). This is better—easier, cheaper—than try-
ing to come up with rules between pairs of movies. Note 
again that such factors are not predefined but are auto-
matically discovered during learning; they may not always 
be easy to interpret or assign a meaning to.

Another possible application area is document catego-
rization (Blei 2012). Let us say we have a lot of documents, 
and each is written using a certain bag of words. Again the 
data is sparse; each document uses only a small number 
of words. Here, we can interpret hidden factors as topics. 
When a reporter writes a report, they want to write about 
certain topics, so each document is a combination of cer-
tain topics, and each topic is written using a subset of all 
possible words. This is called latent semantic indexing. It is 
clear that this makes more sense than trying to come up 
with rules such as “People who use the word X also use the 
word Y.”

Thinking of how the data is generated through hidden 
factors and how we believe they combine to generate the 
observable data is important, and it can make the estima-
tion process much easier. What we discuss here is an addi-
tive model where we take a sum of the effects of the hidden 
factors. Models are not always linear—for example, a fac-
tor may inhibit another factor—and learning nonlinear 
generative models from data is one of the important cur-
rent research directions in machine learning.
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In the next chapter, we will discuss a different type 
of scenario where the learning system is an agent that is 
situated in an environment. The agent, e.g., a robot, has 
sensors to detect its state in the environment and can take 
actions, as a result of which it gets a reward or not. As we 
will see shortly, the aim in this case corresponds to learn-
ing what actions should the agent take in which state to 
maximize the total reward.



6

LEARNING TO TAKE ACTION

Reinforcement Learning

Let us say we want to build a machine that learns to play 
chess. Assume we have a camera to see the positions of the 
pieces on the board, ours and our opponent’s, and the aim 
is to decide on our moves so that we win the game.

In this case, learning is difficult because of two rea-
sons. First, it is very costly to have a teacher who will take 
us through many games, indicating the best move for 
each board state. Second, in many cases, there is no such 
thing as the best move; how good a move is depends on 
the moves that follow. A single move does not count; a 
sequence of moves is good if after playing them we win the 
game. The only real feedback is at the end of the game, it’s 
the result of the game, whether we win or lose.
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Another example is a robot that is placed in a maze to 
find a goal location. The robot can move in one of the four 
compass directions and should make a sequence of move-
ments to reach the goal. There may be obstacles, static or 
dynamic, that the robot should navigate around. As long 
as the robot moves around, there is no feedback and the 
robot tries many moves until it reaches the goal; only then 
does it get a reward (for correct completion of the task). In 
this case there is no opponent, but we can have a prefer-
ence for shorter trajectories—the robot may be running 
on a battery—which implies that in this case we are play-
ing against time.

These two applications have a number of points in 
common. There is a decision maker, called the agent, which 
is placed in an environment (see figure 17). In the first case, 

Reward
State Action

AGENT

ENVIRONMENT

Figure 17  Basic setting for reinforcement learning where the agent 
interacts with its environment. At any state of the environment, the agent 
takes an action and the action changes the state and may or may not return  
a reward.
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the chessboard is the environment of the game-playing 
agent; in the second case, the maze is the environment 
of the robot. At any time, the environment is in a certain 
state, which means the position of the pieces on the board 
or the position of the robot in the maze, respectively. The 
decision maker has a set of actions possible: the legal move-
ment of pieces on the chessboard or the movement of the 
robot in various directions without hitting any obstacle. 
Once an action is chosen and taken, the state changes.

The solution to the task requires a sequence of actions, 
and we get feedback in the form of a reward. What makes 
learning challenging is that the reward comes rarely and 
generally only after the complete sequence has been car-
ried out—we win or lose the game after a long sequence 
of moves. The reward defines the aim of the task and is 
necessary if we want learning. The agent learns the best 
sequence of actions to solve the task where “best” is quan-
tified as the sequence of actions that returns the maximum 
reward as early as possible. This is the setting of reinforce-
ment learning (Sutton and Barto 2018).

Reinforcement learning is different in a number of 
respects from the learning methods we’ve already dis-
cussed. It is called “learning with a critic,” as opposed to 
the learning with a teacher that we have in supervised 
learning. A critic differs from a teacher in that a critic does 
not tell us what to do, but only how well we have been 
doing in the past. The critic never informs in advance! The 
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feedback is scarce and when it comes, it comes late. This 
leads to the credit assignment problem. After taking several 
actions and getting the reward, we would like to assess the 
individual actions we did in the past and find the moves 
that led us to win the reward so that we can record and 
recall them later on.

Actually, what a reinforcement learning program does 
is generate an internal value for the intermediate states 
or actions in terms of how good they are at leading us 
to the goal and getting us the real reward. Once such an 
internal reward mechanism is learned, the agent can just 
take the local actions to maximize it. The solution to the 
task requires a sequence of actions chosen in this way that 
cumulatively gets the highest real reward.

Unlike the applications we discussed previously, here 
there is no external process that provides the training 
data. It is the agent that actively generates data by trying 
out actions in the environment and receiving feedback (or 
not) in the form of a reward. It then uses this feedback to 
update its knowledge so that in time it learns to do actions 
that return the highest reward.

K-Armed Bandit

We start with a simple example. The K-armed bandit is a 
hypothetical slot machine with K levers. The action is to 
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choose and pull one of the levers; each lever returns a cer-
tain amount of money, which can be zero, which is the 
reward associated with the lever (action). The task is to 
decide which lever to pull to maximize the reward.

This is a classification problem where we choose one 
of K. If this were supervised learning, the teacher would 
tell us the correct class, namely, the lever leading to maxi-
mum earning. In this case of reinforcement learning,  
we can only try the different levers and keep track of the  
best.

Initially estimated values for all levers are zero. To 
explore the environment, we can choose one of the levers 
at random and observe its reward. If that reward is higher 
than zero, we can just store it as our internal reward esti-
mate of that action. Then, when we need to choose a lever 
again, we can keep on pulling that lever and receiving pos-
itive rewards. But it may be the case that another lever 
leads to a higher reward, so even after finding a lever with 
a positive reward we want to try out the other levers; we 
need to make sure that we have done a thorough enough 
exploration of the alternatives before we become set in our 
ways. Once we try out all the levers and know everything 
there is to know, we can then choose the action with the 
maximum value.

The setting here assumes that rewards are determin-
istic, that we always receive the same reward for a lever. 
In a real slot machine, the reward is a matter of chance, 
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and the same lever may lead to different reward values in 
different trials. In such a case, we want to maximize our 
expected reward, and our internal reward estimate for the 
action is the average of all rewards in the same situation. 
This implies that doing an action once is not enough to 
learn how good it is; we need to do many trials and collect 
many observations (rewards) to calculate a good estimate 
of the average.

The K-armed bandit is a simplified reinforcement 
learning problem because there is only one state—one 
slot machine. In the general case, when the agent chooses 
an action, not only does it receive a reward or not, but its 
state also changes. This next state of the agent may also 
be probabilistic because of the hidden factors in the envi-
ronment, and this may lead to different rewards and next 
states for the same action.

For example, there is randomness in games of chance 
that also affect the action and thus the next state: in some 
games there are dice, or we draw randomly from a deck 
in card games. In a game like chess, there are no dice or 
decks of cards, but there is an opponent whose behav-
ior is unpredictable—another source of uncertainty. In 
a robotic environment, the obstacles may move or there 
may be other mobile agents that can occlude perception 
or limit movement. Sensors may be noisy and motors that 
control the actuators may be far from perfect: A robot may 
want to go ahead, but because of wear and tear may swerve 
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to the right or left. All these are hidden factors that intro-
duce uncertainty, and as usual, we estimate expected val-
ues to average out the effect of uncertainty.

Another reason the K-armed bandit is simplified is 
because we get a reward after a single action; the reward 
is not delayed and we immediately see the value of our 
action. In a game of chess or with a robot whose task is to 
find the goal location in a room, the reward arrives only at 
the very end, after many actions during which we receive 
no reward or any other feedback.

In reinforcement learning, what we want is to be able 
to predict how good any intermediate action is in taking 
us to the real reward—this is our internal reward estimate 
for the action. Initially, this reward estimate for all actions 
is zero because we do not yet know anything. We need 
data to learn, so we need to do some exploration where we 
try out certain actions and observe whether we get any 
reward; we then update our internal estimates using this 
information.

As we explore more, we collect more data, and we learn 
more about the environment and how good our actions 
are. When we believe we have reached a level where our 
reward estimates of actions are good enough, we can start 
exploitation. We do this by taking the actions that generate 
the highest reward according to our internal reward esti-
mates. In the beginning when we do not know much, we 
try out actions at random; as we learn more, we gradually 
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move from exploration to exploitation by moving from 
random choices to those influenced by our internal reward 
estimates.

Temporal Difference Learning

For any state and action, we want to learn the expected 
cumulative reward starting from that state with that 
action. This is an expected value because it is an average 
over all sources of randomness in the rewards and the 
states to come. The expected cumulative rewards of two 
consecutive state-action pairs are related through the Bell-
man equation, and we use it to back up the rewards from 
later actions to earlier actions, as follows.

In figure 18, we have a grid world. Let us consider the 
final move of the robot that leads to the goal; because we 
reach the goal, we receive a reward of, say, 100 units. Now 
consider the state and action immediately before that. In 
that state we do an action, which, though it does not give 
us an immediate reward (because we will still be one step 
away from the goal), takes us to the state where with one 
more action we can get the full reward of 100. This means 
that that action in that state has a lot of value, but it is 
still one step away. So, to calculate the value, we discount 
the real reward, let us say by a factor of 0.9 (because the 
reward is in the future and the future is never certain), and 
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we say that that particular state-action pair has an internal 
reward of 90.

Note that the real reward there is still zero, because we 
still have not reached the goal, but we internally reward 
ourselves for having arrived at a state that is only one step 
away from the goal. Similarly, the one before that action is 
discounted twice and gets an internal reward of 81, and we 
can continue assigning internal values to all the previous 

10081 90

AB Goal

Figure 18  Temporal difference learning through reward backup. When 
we are in state A, if we go right, we get the real reward of 100. In state B just 
before that, if we do the correct action (i.e., go right), we get to A where with 
one more action we can get the real reward, so it is as if going right in B  
also has a reward. But it is discounted (here by a factor of 0.9) because it is 
one step before, and it is a simulated internal reward, not a real one. The real 
reward for going from B to A is zero; the internal reward of 90 indicates how 
close we are to getting the real reward. Similarly, any action that gets us to B 
has an internal reward of 81.
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actions in that sequence. Of course, this is for only one 
trial episode. We need to do many trials where in each 
because of the uncertainties we follow a different path 
visiting different states and observing different rewards, 
and we average over all those internal reward estimates. 
This is called temporal difference (TD) learning; the inter-
nal reward estimate for each state-action pair is denoted 
by Q, and the algorithm that updates them is called  
Q-learning.

Note that only the final action gets us the real reward; 
all the values for the intermediate actions are simulated 
rewards. They are not the aim; they only help us to find the 
actions that eventually lead us to the real reward. Just like 
in a school, a student gets grades based on their perfor-
mance in different courses, but those grades are only simu-
lated rewards indicating how likely it is the student will get 
the real reward, which they will get only when they gradu-
ate and become a productive member of their community.

In certain applications, the environment is partially 
observable, and the agent does not know the state exactly. 
It is equipped with sensors that return an observation, 
which it uses to estimate the state of the environment. Let 
us say we have a robot that navigates in a room. In the pre-
ceding grid world example, the robot knows its position 
exactly, but this may not always be the case. The robot may 
not know where it is or what else is in the room. The robot 
may have a camera, but an image does not tell the robot 
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the environment’s state in full detail; it only gives some 
indication about the likely state. For example, the robot 
may only know that there is an obstacle to its left.

In such a case, based on the observation, the agent 
predicts its state; or more accurately, it predicts the prob-
ability that it is in each state given the observation and 
then does the update for all probable states weighted by 
their probabilities. This additional uncertainty makes the 
task much more difficult and the problem harder to learn 
(Thrun, Burgard, and Fox 2005).

For example, a self-driving car driving in an urban 
region knows its environment exactly by accessing its geo-
graphic information system data; in a rural region it has to 
rely more on its onboard sensors for navigation.

Learning to Play Games

One of the early applications of reinforcement learning is 
the TD-Gammon program that learns to play backgammon 
by playing against itself (Tesauro 1995). This program is 
superior to the previous NeuroGammon program also 
developed by Tesauro, which was trained in a supervised 
manner based on plays by experts. Backgammon is a com-
plex task; it features an opponent and extra randomness 
due to the roll of dice. Using a relatively simple represen-
tation of the board, TD-Gammon trains a neural network 
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that is a multilayer perceptron with one hidden layer by 
playing against a copy of itself.

Previously we talked about calculating the value of 
an intermediate state by discounting the future reward; 
a value network is a regressor that takes the state as input, 
here the representation of the backgammon board, and 
is trained to estimate its value (the expected cumulative 
reward after that state). A policy network that we will see 
shortly is a classifier that takes the state as input and is 
trained to choose the best action—namely, the one that 
takes us to the next state with the maximum value (on 
the path that returns the maximum expected cumulative 
reward).

Though reinforcement learning algorithms are slower 
than supervised learning algorithms, it is clear that they 
have a wider variety of application and have the potential 
to construct better learning machines. They do not need 
any supervision, and this may actually be better since there 
will not be any teacher bias. For example, Tesauro’s TD-
Gammon program that learned by playing against itself 
in certain circumstances came up with moves that turned 
out to be superior to those made by the best players.

A recent impressive work combines reinforcement 
learning with deep neural networks to play arcade games 
(Mnih et al. 2015). The Deep Q-Network, which is a policy 
network, takes directly the 84 × 84 image of the screen 
(these are arcade games from the 1980s when image 
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resolution was low) and learns to play the game using 
only the image and the score information. The network 
has early convolutional layers for analyzing the image 
and then fully connected layers to synthesize the best joy-
stick action. Training is end-to-end, from pixels to actions, 
using a form of Q-learning that we discussed earlier.

What is also interesting is that the same network with 
the same learning algorithm, network architecture, and 
hyperparameters can learn any of the 49 games, and on 
29 of these it reached or exceeded human performance.

Very recently, the same group developed the AlphaGo 
system (Silver et al. 2016) that again combines deep con-
volutional networks with reinforcement learning, this 
time to play the game of Go. Go is much more difficult 
than backgammon or chess because the board is larger and 
there are more moves possible per position, which implies 
a much larger search space; Go was long believed to be 
beyond our current computing capabilities.

In AlphaGo, the input is a set of specialized features 
that represent the 19 × 19 Go board, and the board is pro-
cessed by convolutional layers as if it is an image. There is 
the policy network trained to select the best move and the 
value network trained to evaluate how close each state is 
to winning the game. The policy network is first trained 
with a very large database of expert games and then fur-
ther improved through reinforcement learning by playing 
against itself. As we discussed in the preface, AlphaGo 
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defeated the European Go champion, 5 games to 0, in 
2015 and defeated one of the greatest Go players in the 
world, 4 games to 1, in March 2016.

What makes AlphaGo impressive is also the high qual-
ity of engineering that went into its implementation, for 
example, in the way computation is distributed over paral-
lel processing units. AlphaGo has played, and learned from, 
many more games than any human player can play in a 
lifetime, and because it learns by playing against a copy 
of itself, it is playing against a better and better opponent, 
all the time forcing it to devise cleverer and cleverer strate-
gies to win.

A recent version named AlphaGo Zero (Silver et al. 
2017) is trained with less human help. The input is just 
the raw board without any specialized input features, and 
there is no initial supervised training with games of expert 
human players. Another difference is that the policy and 
value networks are merged into one but deeper network. 
AlphaGo Zero defeats AlphaGo and is now considered to 
be the best Go player, human or machine. Recently, the 
approach was generalized into a single AlphaZero algo-
rithm that can learn to play not only Go but also chess and 
shogi (Japanese chess) (Silver et al. 2018).

What was helpful in these approaches is that both 
the arcade game screen and the Go board have a two-
dimensional structure that can be analyzed by a convolu-
tional neural network for local features at different levels. 
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The success of DQN and AlphaGo lies in the way that type 
of local feature extraction is seamlessly coupled with tem-
poral difference learning using a deep neural network 
trained end to end.

Reinforcement learning is also applied to card games. 
DeepStack learns to play a two-player variant of poker, 
named heads-up no-limit Texas hold’em. Unlike backgam-
mon or Go where both parties have full information about 
the environment (i.e., the board), in poker, in addition to 
randomness due to draws from a deck, the cards of the 
opponent are hidden. In this imperfect-information set-
ting, a player needs to make inferences about the oppo-
nent’s state from their previously observed actions and 
act accordingly, which allow complicated strategies such 
as bluffing. DeepStack uses a deep neural network and in 
a study involving 44,000 hands of poker, defeated profes-
sional poker players (Moravcik et al. 2017).

Pluribus learned how to play the six-player variant 
(where there is not one but five opponents) by playing 
against five copies of itself, and when playing against five 
professional human players or with five copies of Pluribus 
playing against one human, it performed significantly bet-
ter than humans over the course of 10,000 hands of poker 
(Brown and Sandholm 2019).

Another significant milestone is AlphaStar that learns 
to play StarCraft, which is a real-time strategy game that 
involve thousands of decisions and imperfect information. 
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AlphaStar was rated at Grandmaster level and was above 
99.8 percent of officially ranked human players (Vinyals 
et al. 2019).

Reinforcement Learning in Real Life

An important question nowadays is how we can move 
from games and use deep reinforcement learning in real-
world applications. Games are simplified simulations of 
real life: its rules for playing, winning, and losing are well 
defined; when there is randomness (e.g., dice in backgam-
mon), it should be fair to both parties. What also makes 
games a good testbed for learning is that it is possible to 
simulate games very fast on a computer and hence collect 
large amounts of data very quickly.

Real life, in contrast, has all sorts of ambiguities 
with different sources of uncertainties and sensor noise; 
actions take time and may be imperfect; losses incurred 
after bad actions imply monetary costs and may even 
endanger human safety. In simulating a game, you can try 
any random action to see what it gets you (and actually 
the proofs of convergence of the temporal difference algo-
rithms require this), but you cannot do this in real life.

Reinforcement learning is ideally suited to sequen-
tial decision-making tasks where we need to generate a 
sequence of decisions and where each decision affects later 
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decisions. A decision by itself is not good or bad, so we can-
not always use supervised learning. But the goodness of a 
decision depends on all the decisions before and after, so 
it’s the whole sequence of decisions that’s being evaluated 
at the end. There may also be multiple decision-making 
agents whose actions influence each other’s behavior.

There are many scenarios that fit this description (Li 
2019). In recommender systems, we need to generate a set 
of recommendations to each customer; in healthcare, we 
need to generate the correct sequence of treatment deci-
sions; in economics and finance, we need to generate a 
good sequence of buy/sell decisions, and so on.

One interesting work is the neural architecture search 
algorithm where designing the best neural network struc-
ture is converted to a sequence of decisions on hyperpa-
rameters that define the structure and the connectivity, 
and the reward is the accuracy of this constructed net-
work. So there is the controller neural network that is 
trained with reinforcement learning, and it learns how to 
construct the child network one hyperparameter at a time 
(Zoph and Le 2016).

Another interesting application is regulating the 
temperature and airflow inside a large-scale data center. 
The air temperature is regulated through air-water heat 
exchange, and the controls that can be manipulated are 
the fan speed (controlling air flow) and the valve opening 
(for letting cold water in and expelling warm water). It has 
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been demonstrated that a simple model with little prior 
knowledge trained using reinforcement learning by a few 
hours of exploration suffices for the task and is at the same 
time cost effective (Lazic et al. 2018).

Robotics is an area where reinforcement learning 
is appropriate because the completion of many robot-
ics tasks require the generation of a sequence of cor-
rect actions. Previously we discussed a robot looking for 
the goal location in a maze, which is a particular case of 
navigation, where a robot, for example, a self-driving car, 
needs to find the path from point A to point B subject to 
constraints such as obstacles, while optimizing a criterion 
such as time. A multi-legged robot needs to move its legs 
in the correct order so that it can advance without falling.

One interesting area where robotics meet machine 
learning is imitation learning. Learning a task, if there are 
many possible actions and if long sequences are needed, 
requires a lot of exploration and hence can be slow. A blind 
exploration can also be dangerous because some actions 
can be harmful to the robot or its environment, so one 
possibility is to train the robot in a simulated environ-
ment, at least in early stages. Or, if we have a person who 
already knows how to do the task, the robot can learn by 
imitation. For example, we can have a robot arm learning 
to manipulate objects in its environment (e.g., learning to 
put one object on top of another) by watching and imitat-
ing a person.
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In behavioral cloning, the actions taken by the human 
are recorded step-by-step and taught to the robot; this cor-
responds to transforming the whole task into a sequence 
of supervised learning tasks where for each intermediate 
state, the human action defines the required output. For 
example, a large data set can be collected by having expert 
human drivers drive under a wide variety of road, traffic, 
and weather conditions while recording what actions they 
take in which situation. Such a data set can then be used 
to train a driving program.

Another interesting approach for imitation is called 
inverse reinforcement learning, where we first learn a good 
reward function by observing the human behavior and 
this reward function is then used to train a standard rein-
forcement learning program. This is one hot research topic 
in reinforcement learning. Humans can do a lot of tasks, 
but they do most tasks without explicitly being aware of 
how they do it, so imitation learning helps translate this 
knowledge to a robot.

Machine learning has become an important compo-
nent of many products and services in the past decade, as 
a result of which we have also started to notice the associ-
ated challenges and risks. We have concerns, for example, 
about the privacy and security of the data, as well as the 
transparency, fairness, and accountability of making au-
tomated decisions. We cover such concerns in the next 
chapter.
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CHALLENGES AND RISKS

The Other Side of Machine Learning

As any new technology, the use of machine learning intro-
duces new unknowns and possible side effects that need 
to be spotted and handled appropriately. On the one 
hand, the success of a machine learning solution depends 
directly on how much data there is, so we want to have as 
many users and as much data as possible. But to be able to 
have that, people should be convinced that the system, be 
it a product or service, is “on their side”; that it makes law-
ful and responsible decisions; that the users’ right to pri-
vacy are respected; that the system is fair to all users and 
is transparent about how its decisions are made; and that 
its manufacturers can be held legally accountable when it 
makes a decision that causes harm. If these conditions are 
not met, people will be unwilling to provide information 
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and as a result there can be no learning and no product or 
service to sell.

As a general rule, laws are technology neutral. It’s a 
crime to kill a person whether one uses a rock or a drone. 
The High Court of England and Wales stated in 2019 that 

“the fact that a technology is new does not mean that it is 
outside the scope of existing regulation, or that it is always 
necessary to create a bespoke legal framework for it.”1

For example, it is a basic human right that there can be 
no discrimination because of an individual’s race, gender, 
or age. This should be true regardless of who or what is 
making the decision; so it should be a given that a machine 
learning system is not allowed to make use of such attri-
butes in making a decision.

This may not be always straightforward when we are 
learning from large amounts of data, because there can 
always be correlations that are not immediately apparent. 
For example, the zip code of an individual can be corre-
lated with and hence can act as a proxy of ethnicity (Fava-
retto, De Clercq, and Elger 2019). Learning algorithms are 
surprisingly good at finding such correlations; sometimes, 
they also find correlations that are spurious, especially 
when the data set is small. This is an indicator of the need 
for explainability, which is one requirement that we will 
discuss shortly.

Automated decision making of course is not new but 
was used in more limited scenarios in the past; today its 
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application areas are increasing, which is due not only to 
machine learning but also to the increased precision and 
decreasing cost of automation.

Airplanes have had autopilots, trains and boats their 
guidance systems, but building self-driving cars is a much 
more difficult task; consider an urban environment, which 
has not only many other cars but also other dynamic 
agents such as pedestrians, cyclists, and so on. Driving is 
a mode of transport that is everyday and ubiquitous, so 
automating it will have more impact. Another example is 
automated trading where computer programs make buy-
or-sell decisions. Face recognition is good if it helps the 
police to catch criminals; it is bad if it is used to track 
people without their knowledge and consent. The more 
widespread use of automation technologies, which depend 
increasingly on machine learning, is helpful, but comes 
with downsides, one being that we become reliant on them 
too much and too quickly.

When a human driver causes an accident, its effect is 
limited because the probability that another driver makes 
the exact same erroneous decision is very small; if a self-
driving car causes an accident, this means that all other 
cars of that make are sure to cause an accident if they are 
put in the same scenario. That is why when an airplane 
is involved in an accident, all other airplanes of the same 
make are immediately grounded until the cause of the 
accident is determined and eliminated; in the future, it 
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may happen that your self-driving car will refuse to run 
in the morning because some other car has recently been 
involved in an accident in another city and the reason has 
not yet been determined.

In addition to risks associated with automated deci-
sion making, another source of risk in machine learning 
is related to data, and this has different aspects. First is 
the need for data privacy and security. Data may contain 
personal information that needs to be kept confidential; 
so any collection, storage, and processing of data should 
be done with privacy and security concerns in mind. Sec-
ond is that the quality of any machine learning solution 
directly depends on the quality of the data. If the data is 
biased or outright corrupt so will all the decisions based 
on that data be. Third is the element of trust. In high-
risk applications, for example in the medical domain, we 
require our trained models to be interpretable so that they 
provide not only a decision but also a human-readable 
explanation that justifies that particular decision.

Let us now discuss these aspects one by one.

Data Privacy and Security

When we have a lot of data, its analysis can lead to valu-
able results, and historically, data collection and analysis 
have resulted in significant findings for humanity, in many 
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domains from medicine to astronomy. The current wide-
spread use of digital technology allows us to collect and 
analyze the data quickly and accurately, and in numerous 
new domains.

With more and detailed data, the critical point today 
is data privacy and security (Horvitz and Mulligan 2015). 
How can we make sure that we collect and process data 
without infringing on people’s privacy concerns and that 
the data is not used for purposes beyond its original 
intention?

We expect individuals in a society to be aware of the 
advantages of data collection and analysis in domains 
such as health care and safety. And even in other domains 
such as retail, people always appreciate services and prod-
ucts tailored to their likes and preferences. Still, no one 
likes to feel that their private life is being pried into. Our 
smart devices, for example, should not turn into digital 
paparazzi recording the details of our lives and making 
them available without our knowledge.

In the past, information about people used to be dis-
tributed among data collectors where each had access only 
to the part that it needed: the bank had data only related to 
our financial situation, the employer had data only related 
to our work, and so forth. There was also data related to 
services provided by different companies, such as a travel 
agent, or a utility provider, again each seeing a small por-
tion of the person’s profile, and our social interactions 
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were not recorded. In a world where these different pieces 
of data are made easily accessible, even if each one is par-
tially informative and some seemingly unimportant, they 
can be combined to make very detailed inferences about 
a person. This is both the power and the risk of learning 
from data.

The basic requirements in data privacy are that the 
user who generates the data should always know what 
and how much data is collected, what part of it is stored, 
whether that data will be analyzed for any purpose, and if 
so, what that purpose is. No more data than what is abso-
lutely necessary should be collected. The data collector 
should be completely open about what is collected.

This requirement of transparency implies that the 
owner of the data should always be informed during both 
data collection and use. Before any analysis, the data 
should be sanitized—that is, all the personal details should 
be hidden to make the record anonymous, which is not a 
straightforward process. With human records, for instance, 
just removing unique identifiers such as the name or social 
security number is not enough; fields such as birth date, 
zip code, and so on provide partial clues, and individuals 
can be identified by combining such clues (Sweeney 2002).

Data is becoming such a valuable raw resource that it 
behooves the collector of the data to take all the necessary 
steps for its safekeeping and to not share it with someone 
else without the explicit consent of the data owner.
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Individuals should have complete control over their 
data. They should always have the means to view what 
data of theirs has been collected; they should be able to 
ask for its correction or complete removal.

A recent line of research is in privacy-preserving learn-
ing algorithms. Let us say that we have parts of data 
from different sources (e.g., different countries may have 
patients suffering from the same disease) and that they 
do not want to lend their data (detailed information about 
their citizens) to a central user to train a model with all the 
data combined. In such a case, the easiest possibility is to 
share the data in a form that is sufficiently anonymized, 
which may not always be easy.

One research topic in machine learning is called differ-
ential privacy, where the idea is to knowingly corrupt the 
data before sharing it so that individual records cannot be 
identified while still allowing correct generalizations to be 
learned from the whole.

Another approach is called homomorphic encryption, 
where the data is stored encrypted and is also processed 
without decrypting it. Because the data always remains 
encrypted, the privacy of the information is preserved; 
the disadvantage is that this type of processing requires a 
lot of extra computation.

Yet another interesting idea for privacy is federated 
learning, where the idea is to have multiple copies of the 
model for different users. Each model then learns from its 
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user and is updated by its local data, also regularly sharing 
the model updates with the other users. Because the other 
users see only the model updates and not the data, the 
data of each user is kept private.

Concerns over data privacy and security should be an 
integral part of any data analysis scenario, and it should 
be resolved before any learning is done. Mining data is just 
like mining for gold—before you start any digging, you 
need to make sure that you have all the necessary permits. 
In the future, we may have data processing standards 
where every data set contains some metadata about this 
type of ownership and permission information; then, it 
may be required that any machine learning or data analy-
sis software check for these and run only if the necessary 
stamps of approval are there.

Biased Data

How good a learned model will be depends first of all on 
how good its training data is. Any problems with that data 
will be reflected in the quality of the model.

One source of problems is possible mishaps in collect-
ing the data. For example, if a face recognition data set 
contains more White faces than those of other races, any 
face recognizer trained on that data will perform poorly 
on races that are underrepresented. Basically, the error 
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for any class depends on how many training instances 
there are of that class, and so the learning algorithm will 
have less motive to correct the errors on classes that have 
fewer training instances. This type of sampling error can 
be corrected by collecting a balanced training sample that 
includes the whole range of racial identities.

Basically, we need to make sure to match the distri-
bution of the training data with the distribution of the 
data encountered in the field; any mismatch will result in 
a poor model. For example, we frequently see that scien-
tific articles that report very high accuracies in the lab do 
not always lead to successful commercial products. This is 
partly because the lab conditions are close to ideal, where, 
for example, data is collected carefully and with high preci-
sion; such conditions are almost impossible to duplicate in 
the real world.

Such erroneous sampling may also have indirect 
causes such as biases in the underlying process that gener-
ates the data. For example, data may have been collected 
in the past where there may have been lack of diversity; a 
bank may have had fewer women than men as customers 
in the past, or fewer customers from certain minorities. 
Achieving fairness, by detecting and mitigating such biases 
is an important research topic in machine learning.

The fact that a model that learns the general behavior 
in the data does not make good decisions for underrepre-
sented cases or outliers has other implications as well.
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For example, there is an important risk in basing rec-
ommendations too much on past use and preferences. If 
a person only listens to songs similar to the ones they 
listened to and enjoyed before, or watches movies similar 
to those they watched and enjoyed before, or reads books 
similar to the books they read and enjoyed before, then 
there will be no new experience and that will be limiting, 
both for the person and for the company that is always 
eager to find new products to sell. So in any such recom-
mendation scheme, there should also be some attempt at 
introducing some diversity.

A recent study (Bakshy, Messing, and Adamic 2015) 
has shown that a similar risk also exists for interactions 
on social media. If a person follows only those people they 
agree with and reads posts, messages, and news similar to 
the ones they have read in the past, they will be unaware 
of other people’s opinions and that will limit their experi-
ence, as opposed to traditional news media outlets, such 
as newspapers or TV, that contain a relatively wider range 
of news and opinions.

Model Interpretability

As we have more and more computer systems that are 
trained from data to make autonomous decisions, we need 
to be concerned with relying so much on computers. One 
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important requirement is the validation and verification 
of software systems—that is, making sure that they do 
what they should do and do not do what they should not 
do.

This may be especially difficult for models trained 
from data, because training involves different sources of 
randomness in data and optimization; this makes trained 
software less predictable than programmed software.

Our approach in testing a trained model is to check its 
performance on data unused in training, to see how well 
it has generalized from the particular training examples. 
After having trained the model on the training data, which 
is one small random subset of all possible cases, we test it 
on a validation data that is another random subset, and 
we use the accuracy on this new data as our criterion of 
the expected accuracy in later use. This is a useful criterion, 
but it is not sufficient, because both training and valida-
tion sets are small and randomly chosen, and changing 
them may lead to changes in the accuracy estimates.

A second problem is sensitivity. For example, it has 
been shown with deep neural networks that slightly per-
turbed versions of valid examples sometimes cause very 
big changes at the output. Such adversarial examples are 
taken as an indicator that the model has not generalized 
well but is still greatly dependent on the individual train-
ing instances. This is disturbing because we know that our 
sensors are never perfect and there can always be noise at 
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the input. For example, we do not want a self-driving car 
to run amok if bad weather clouds its sensors or the road 
signs get muddy.

Because of all these reasons, we should always ques-
tion the decision made by a trained model and require 
additional validation, especially in domains where wrong 
decisions have possible high losses. We want our model to 
provide not only an output but also an explanation as to 
how it came to that decision. Such explanations should be 
in a format that does not require any expertise in machine 
learning, but any user of the system should be able to 
understand and assess them.

The internal operation of a deep neural network is 
not easily understandable; it’s an example of a black box 
model. However, a linear model where we calculate a total 
score as a weighted sum of different factors, or a decision 
tree that can be written down in terms of if-then rules, are 
easy to understand and hence preferrable (see figure 6). 
Such rules can be checked and assessed by human experts 
to see if the trained model has learned meaningful rules. 
This is the topic of explainable artificial intelligence (XAI), 
which is another research area that is increasingly becom-
ing important as trained models are being used more and 
more (Gilpin et al. 2018).

One interesting idea is that of “counterfactuals” 
where the idea is to inform the user how the decision 
could have been different: for example, “You were denied 
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a loan because your annual income was £30,000. If your 
income had been £45,000, you would have been offered 
a loan” (Wachter, Mittelstadt, and Russell 2018, 844). Of 
course, in generating explanations as well as counterfactu-
als, it is necessary to preserve commercial secrets; banks 
for example would not want to disclose the exact formula 
they use for credit scoring.

Ethical, Legal, and Other Social Aspects

As any engineering product, the correct behavior of a 
trained model should be checked rigorously. We have 
already considered possible biases in the training data that 
may be harmful. In any scenario where automatic deci-
sions are made based on past data, such as finance, health 
care, or justice, we have to guarantee transparency in the 
collection of data and fairness in making decisions. We also 
have to make sure that such systems use models that are 
interpretable, and that their decisions be explainable to its 
users, and we have to be able to hold the manufacturers of 
such systems accountable.

When intelligence is embodied and the system takes 
physical actions, the correctness of the behavior becomes 
an even more critical issue and even human life may be at 
stake. So another requirement is safety. The system does 
not need to be a drone with onboard weaponry for this 
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to be true; even an autonomous car becomes dangerous 
if it is driven badly. When such concerns come into play, 
the usual expected value or utilitarian approaches do not 
apply, as is discussed in the “trolley problems,” a variant of 
which is as follows.

Let us say you are riding in an autonomous car when 
a child suddenly runs across the road. Assume the car is 
going so fast that it knows it cannot stop. But it can still 
steer, and it can steer to the right to avoid hitting the child. 
But let us say that the child’s mother is standing to the 
right of the road. How should the car decide? Should it 
go ahead and hit the child, or steer right and hit the mom 
instead? How can we program such a decision? Or should 
the car instead steer left and drive off the cliff after cal-
culating that your life is worth less than that of the child 
or the mother’s? Can the driving software be allowed to 
take factors such as age or gender into account in making 
a decision?

This seems like an extreme case—trolley problems 
are thought experiments—however, the point is that in 
many decision-making scenarios, there are multiple pos-
sible actions with possibly harmful results, and we need to 
come up with a way to program such decisions in machines 
that is in line with our customary standards of ethics and 
morality.

Increased intelligence due to machine learning can 
also be used for outright malicious and criminal practices. 
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Pattern recognition technologies such as face or speech 
recognition can be used for mass surveillance. Intelligent 
robots can use their intelligence to become better at kill-
ing. Collected data can be analyzed for subversive pur-
poses, such as to influence voter decisions. These are some 
other ethical and legal implications of the use of machine 
learning.

Another aspect is that making machines more intel-
ligent leads to higher automation and therefore job loss. 
Before, jobs became outdated from one generation to 
the next—for example, sons of blacksmiths became car 
mechanics—but now it’s happening within a generation. 
Once, people learned a job in their twenties that they did 
with small updates until they retired. Now it seems as if we 
need to learn a new job every ten or fifteen years. To be able 
to catch up with increasing intelligence of the machines, 
we need to continuously increase our knowledge as well, 
which means that lifelong education programs are going 
to become more important in the future. This also implies 
that unemployment should lose its social stigma but be 
treated as a normal state of affairs; that time in between is 
the period when the person is learning their next job, their 
next version, so to speak.

The next, final chapter will discuss possible future 
directions of machine learning research and applications.





8

WHERE DO WE GO FROM HERE?

Make Them Smart, Make Them Learn

Machine learning has already proved itself to be a viable 
technology, and its applications in many domains are 
increasing every day. This trend of collecting and learn-
ing from data is expected to continue even stronger in the 
near future (Jordan and Mitchell 2015). Analysis of data 
allows us to both understand the process that underlies 
the past data—just like scientists have been doing in dif-
ferent domains of science for hundreds of years—and also 
predict the behavior of the process in the future.

A few decades ago, computing hardware used to 
advance one microprocessor at a time; every new micro-
processor—first size 8, then 16, then 32 bits—could do 
slightly more computation in unit time and could use 
slightly more memory, and this translated to slightly 
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better computers. Similarly, computer software used to 
advance one programming language at a time. Each new 
language made some new type of computation easier to 
program. When computers were used for number crunch-
ing, we programmed in Fortran; when we used them for 
business applications, we used Cobol; later on, when com-
puters started to process all types of and more complex 
types of information, we developed object-oriented lan-
guages that allowed us to define more complicated data 
structures together with the specialized algorithms that 
manipulate them.

Then, computing started to advance one operating sys-
tem at a time; each new version made computers easier to 
use and supported a new set of applications. Today, com-
puting is advancing one smart device or one smart app 
at a time. Once, the key person who defined the advance 
of computing was the hardware designer, then it was the 
software engineer, then it was the user sitting in front of 
their computer, and now it is anyone while doing anything.

Nobody eagerly awaits a new microprocessor any-
more, and neither a new programming language nor a new 
operating system version is newsworthy. Now we wait for 
the next new device or app, smart either because of its 
designer, or because it learns to be smart.

More and more of our lives are being projected in the 
digital domain, and as a result we are creating more and 
more data. The earliest hard disks for personal computers 
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had a capacity of five megabytes; now a typical computer 
comes with five hundred gigabytes—this is one hundred 
thousand times more storage capacity in roughly thirty 
years. A reasonably large database now stores hundreds 
of terabytes, and we have already started using the pet-
abyte as a measure; very soon, we will jump to the next 
measure, the exabyte, which is one thousand petabytes 
or one million terabytes. Together with an increase in 
storage capacity, processing has also become cheaper and 
faster thanks to advances in technology that deliver both 
faster computer chips and parallel architectures contain-
ing thousands of processors that run simultaneously, each 
solving one part of a large problem.

The trend of moving from all-purpose personal comput-
ers to specialized smart devices is also expected to acceler-
ate. We discussed in chapter 1 how in the past organizations 
moved from a computer center to a distributed scheme with 
many interconnected computers and storage devices; now 
a similar transformation is taking place for a single user. A 
person no longer has one personal computer that holds all 
their data and does all their processing; instead, their data 
is stored in the “cloud,” in some remote offsite data center, 
but in such a way as to be accessible from all their smart 
devices, each of which accesses the part it needs.

What we call the cloud is a virtual computer center 
that handles all our computing needs. We do not need 
to worry about where and how the processing is done or 
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where and how the data is stored as long as we can keep 
accessing it whenever we want. This used to be called grid 
computing, analogous to the electrical grid made up of an 
interconnected set of power generators and consumers; as 
consumers, we plug our TV in the nearest outlet without 
a second thought as to where the electricity comes from.

This also implies connectivity with larger bandwidths. 
Streaming music and video is already a feasible technol-
ogy today. CDs and DVDs we keep on our shelves (that 
had once supplanted the nondigital LPs and videotapes) 
have now in turn become useless and are replaced by some 
invisible source that stores all the songs and the mov-
ies. E-book and digital subscription services are quickly 
replacing the printed book and the bookstore, and search 
engines have long ago made window stoppers out of thick 
encyclopedias.

With smart devices, there is no longer any need for 
millions of people to store separate copies of the same 
song/movie/book locally. The motto now is: Do not buy it, 
rent it! Buy the smart device, or the app, or the subscrip-
tion to the service, and the bandwidth that allows you to 
access it when you need it.

This change and ease in accessibility also offers new 
ways to “package” and sell products. For example, tradi-
tionally music LPs and CDs corresponded to an “album” 
that is made up of a number of songs; it is now possible 
to rent individual songs. Similarly, it is now possible to 
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purchase a single short story without buying the book of 
collected stories.

In chapter 5, we discussed the use of machine learning 
in recommendation systems. With more shared data and 
streaming, there will be more data to analyze, and further-
more, the data will be more detailed. For example, now we 
also know how many times a person listened to a song or 
how far they watched into a movie, and such information 
can be used as a measure of how much the person enjoyed 
the product.

With advances in mobile technology, there is continu-
ing interest in wearable devices. The smartphone, a wear-
able device, is now much more than a phone; it also acts 
as an intermediary for smaller smart “things,” such as a 
watch or glasses, by putting them online. The phone may 
become even smarter in the near future, for example, with 
an app for real-time translation: You’ll speak in your own 
language on one end and the person on the other end will 
hear it automatically translated into their own tongue, not 
only with the content syntactically and semantically cor-
rect but also in your voice and uttered with correct empha-
sis and intonation.

Machine learning will help us make sense of an increas-
ingly complex world. Already we are exposed to more data 
than what our sensors can cope with or our brains can pro-
cess. Information repositories available online today con-
tain massive amounts of digital text and are now so big 
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that they cannot be processed manually. Using machine 
learning for this purpose is called machine reading.

We need search engines that are smarter than the ones 
that use just keywords. Currently we have information 
distributed in different sources or mediums, so we need 
to query them all and merge the responses in an intelli-
gent manner. These different sources may be in different 
languages—for example, a French source may contain 
more information on the topic even though your query is 
in English. A query may also trigger a search in an image or 
video database. And still, the overall result should be sum-
marized and condensed enough to be digestible by a user.

Web scraping is when programs automatically surf the 
web and extract information from web pages. These web 
pages may be social media, and accumulated information 
can be analyzed by learning algorithms, for instance, to 
track trending topics and the detection of sentiment, opin-
ions, and beliefs about products and people—for example, 
politicians in election times. Another important research 
area where machine learning is used in social media is 
to identify the “social networks” of people who are con-
nected; analyzing such networks allows us to find cliques 
of like-minded individuals, or to track how information 
propagates over social media.

One of the current research directions is in adding 
smartness—that is, the ability to collect, process, and 
make inferences from data, as well as to share it with 
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other online devices—to all sorts of traditional tools and 
devices, including traditional wearables such as glasses 
and watches. When more devices are smart, there will 
be more data to analyze and make meaningful infer-
ences from. Different devices and sensors collect different 
aspects of the task, and a critical task will be to combine 
and integrate these multiple modalities. This implies all 
sorts of new interesting scenarios and applications where 
learning algorithms can be used.

Smart devices can help us both at work and at home. 
Machine learning helps us in building systems that can 
learn their environment and adapt to their users, to be 
able to work with minimum supervision and maximum 
user satisfaction.

Important work is being done in the field of smart 
cars. Cars that are online allow their passengers to be 
online and can deliver all types of online services, such as 
streaming video, over their digital infotainment systems. 
Cars that are online can also exchange data for mainte-
nance purposes and access real-time information about 
the road and weather conditions. If you are driving under 
difficult conditions, a car that is a mile ahead of you is a 
sensor that is a mile ahead of you.

But more important than being online is when cars 
will be smart enough to help with the driving itself. 
Cars already had assistance systems for cruise control, 
self-parking, and lane keeping, but these days they are 
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becoming even more capable. The ultimate aim is for them 
to completely take over the task of driving, and to that end 
we already have prototypes of such autonomous vehicles 
today. Of course, this is also true also for buses, trucks, 
and so on. For example, in the case of a pandemic when 
the population is on lockdown, self-driving trucks can 
transport products from factories to cities.

The visual system of a human driver does not have a 
very high resolution, and they can only look in a forward 
direction. Though their visual field is slightly extended 
through the use of side and rearview mirrors, blind spots 
remain. A self-driving car, on the other hand, can have 
cameras with higher resolution in all directions and can 
also use sensors that a human does not have, such as GPS, 
ultrasound, or night vision, or it can be equipped with a 
special type of radar, called LIDAR, that uses a laser for 
measuring distance. A smart car can also access all sorts of 
extra information, such as the weather, much faster. An 
electronic driver has a much shorter reaction time.

Machine learning plays a significant role in self-
driving cars that result in both smoother driving, faster 
control, and greater fuel efficiency, but also in smart sens-
ing, for example, by automatic recognition of pedestrians, 
cyclists, traffic signs, and so forth. Self-driving cars will 
not only be safer but they will also be faster; the speed lim-
its we have are set because of the relatively slower reaction 
times of human drivers. There are still problems though: 
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Lasers and cameras are not very effective in harsh weather 
conditions—when there is rain, fog, or snow—so technol-
ogy should advance until we get smart cars that can run in 
all types of weather.

Self-driving cars and robot taxis are expected to take 
over driving in cities and on highways in the next decade. It 
also seems very likely that sometime in the next decade or 
so, cars and drones will fuse and we will have self-piloting 
flying cars, with their concomitant tasks that will be best 
handled by machine learning.

Machine learning has the basic advantage that a task 
does not need to be explicitly programmed but can be 
learned. Space will be the new frontier for machine learning 
as well. Future space missions will very likely be unmanned. 
Before, we needed to send humans because we did not have 
machines that were as smart and versatile, but now we 
have capable robots. If there are no humans on board, the 
load will be lighter and simpler, and there will be no need to 
bring the load back. If a robot is to boldly go where no one 
has gone before, it can only be a learning robot.

High-Performance Computation

With big and bigger data, we need storage systems 
that have higher capacity and faster access. Processing 
power will necessarily increase so that more data can be 
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processed in a reasonable time. This implies the need for 
high-performance computer systems that can store a lot 
of data and do a lot of computation very quickly.

There are physical limits such as the speed of light and 
the size of the atom, which suggests an upper limit on the 
speed of transfer1 and a lower limit on the size of the basic 
electronics. The obvious solution to this is parallel process-
ing—if you have eight lines in parallel, you can send eight 
data items at the same time; and if you have eight proces-
sors, you can process those eight items simultaneously, in 
the time it takes to process a single one.

Today parallel processing is routinely used in com-
puter systems. We have powerful computers that contain 
thousands of processors running simultaneously. There 
are also multicore machines where a single computing 
element has multiple “cores” that can do simple computa-
tions simultaneously, implementing parallel processing in 
a single physical chip.

But high-performance computation is not just a hard-
ware problem; we also need good software interfaces to 
distribute the computation and data over a very large 
number of processors and storage devices. Indeed, soft-
ware and hardware for parallel and distributed computa-
tion for big data are important research areas in computer 
science and engineering today.

In machine learning, the parallelization of learning 
algorithms is becoming increasingly important. Models 
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can be trained in parallel over different parts of the data on 
different computers and then these models can be merged. 
Another possibility is to distribute the processing of a sin-
gle model over multiple processors. For example, with a 
deep neural network composed of thousands of units in 
multiple layers, different processors can execute different 
layers or subsets of layers working in a pipeline manner.

The graphical processing unit (GPU) was originally made 
for rapid processing and the transfer of images in graphi-
cal interfaces—for example, in video game consoles—but 
the type of parallel computation and transfer used for 
graphics has also made them suited for many machine 
learning tasks. Indeed, specialized software libraries are 
being developed for this purpose and GPUs are frequently 
used by researchers and practitioners effectively in various 
machine learning applications; for example, the AlphaGo 
network that we discussed in chapter 6 is parallelized to 
run on GPUs. There is also research in developing more 
specialized processing units, for example, to carry out the 
sort of calculations used in neural networks; today’s deep 
neural networks with hundreds of layers and millions of 
parameters run too slowly on an ordinary CPU.

We are seeing a trend toward cloud computing in 
machine learning applications too, where instead of buy-
ing and maintaining the necessary hardware, people rent 
the use of offsite data centers. A data center is a physical 
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site that houses a very large number of computing serv-
ers with many processors and ample storage. There are 
typically multiple data centers in physically different loca-
tions; they are all connected over a network, and the tasks 
are automatically distributed and migrated from one to 
the other, so that the load from different customers at dif-
ferent times and in different sizes is balanced. All of these 
requirements fuel significant research today.

One important use of the cloud is in extending the 
capability of smart devices, especially the mobile ones. 
These online, low-capacity devices can access the cloud 
from anywhere to exchange data or request computation 
that is too large or complex to do locally. Consider speech 
recognition on a smartphone. The phone captures the 
acoustic data, extracts the basic features, and sends them 
to the cloud. The actual recognition is done in the cloud 
and the result is sent back to the phone.

In computing, there are two parallel trends. One is 
in building general-purpose computers that can be pro-
grammed for different tasks and for different purposes, 
such as those used in servers in data centers. The other is 
to build specialized computing devices for particular tasks, 
packaged together with specialized input and output. The 
latter used to be called embedded systems but are today 
called cyber-physical systems, to emphasize the fact that 
they work in the physical world with which they interact. 
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A system may be composed of multiple such units (some 
of which may be mobile), and they may be interconnected 
over a network—for example, a car, a plane, or a home 
may contain a multitude of such devices for different 
tasks. Making such systems smart—in other words, able 
to adapt to their particular environment, which includes 
the user—is an important research direction.

Following this idea, one popular research topic these 
days is edge computing, where we want to have as much 
of the specialized processing as possible done “on the 
edge”—that is, closer to where the data originates. With 
computation getting cheaper and smaller, most of the 
necessary computation can be done locally as soon as it 
is sensed, which has the advantages that we do not need 
to transmit data back and forth, so there is less network 
traffic and hence the response is also faster. This is espe-
cially interesting in artificial intelligence where we have 
large chunks of data such as video, image, or sound, and 
processing them on the spot pushes intelligence to the 
edge; hence the name “edge AI.”

A related concept is fog computing, where we have gen-
eral computing services, just like in cloud computing, but 
they are closer to the user. For example, they may be in our 
local area network as opposed to in a faraway data center, 
similar to how fog is a thin cloud closer to the earth, or us. 
Again, the advantages are less communication and faster 
decision making.
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How Green Is My AI?

Recently with the proliferation of personal comput-
ers, smart phones, Internet, and data centers, the total 
amount of electricity used to power the computers around 
the globe has reached a considerable amount. Computing 
used to be considered environmentally friendly—it is bet-
ter to read from the screen than to print it on paper—
which is partially true, but we always need to keep in mind 
that all our calculations, data storage, and communication 
run on electricity. All those machines need to be powered 
up and they need to be cooled down, which implies an 
ever-increasing carbon footprint.

Machine learning is particularly power-hungry. We 
need to store large data sets and typically learning algo-
rithms need to do a large number of learning iterations, 
each of which takes a lot of computation, and hence power, 
when we use a complex model such as a deep neural net-
work with many layers. Schwartz et al. (2019) report that 

“the computations required for deep learning research 
have been doubling every few months, resulting in an esti-
mated 300,000x increase from 2012 to 2018.”

This has a number of disadvantages: First, if a model 
uses too much power, it cannot be implemented on a 
mobile device running on a battery. Second, a model that 
uses too much computation will be expensive and such a 
device cannot be sold to a large customer base. Third, all 
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that power needs to be produced somehow, and we know 
that frequently countries need to burn coal or gas to gen-
erate that electricity, which has all sorts of detrimental 
effects on the environment including the contribution to 
global warming.

Research on more energy-efficient computer archi-
tectures is an important topic for computing, and energy 
efficiency has become an important criterion in assessing 
the quality of an algorithm; this is especially relevant for 
machine learning that is both data- and computation-heavy.

Data Mining

Though the most important, machine learning is only one 
step in a data mining application (Han and Kamber 2011). 
There is also the preparation of data beforehand and the 
interpretation of the results afterward.

Making data ready for mining involves several stages. 
First, from a large database with many fields, we select the 
parts that we are interested in and create a smaller database 
to work with. It may also be the case that the data comes 
from different databases, so we need to merge them. The 
level of detail may also be different—for instance, from an 
operational database we may extract daily sums and use 
those rather than the individual transactions. Raw data 
may contain errors and inconsistencies or parts of it may 
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be missing, and those should be handled beforehand in a 
preprocessing stage.

After extraction, data is stored in a data warehouse 
on which we do our analysis. One type of data analysis 
is manual where we have a hypothesis—“people who buy 
X also buy Y”—and check whether the data supports the 
hypothesis. The data is in the form of a spreadsheet where 
the rows are the data instances—baskets—and the col-
umns are the attributes—products. One way of concep-
tualizing the data is in the form of a multidimensional data 
cube whose dimensions are the attributes, and data analy-
sis operations are defined as operations on the cube, such 
as slice, dice, and so on. Such manual analysis of the data 
as well as visualization of results is made easy by online 
analytical processing (OLAP) tools.

OLAP is restrictive in the sense that it is human-driven, 
and we can only test the hypotheses we can imagine. For 
example, in the context of basket analysis, we cannot find 
any relationship between distant pairs of products; such 
discoveries require a data-driven analysis, as is done by 
machine learning algorithms.

We can use any of the methods we discussed in previ-
ous chapters, for classification, regression, clustering, and 
so on, to build a model from the data. Typically, we divide 
our data into two as a training set and a validation set. 
We use the first part for training our model and then we 
measure its prediction accuracy on the validation set. By 
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testing on instances not used for training, we want to esti-
mate how well the trained model would do if used later on, 
in the real world. The validation set accuracy is one of our 
main criteria in accepting or rejecting the trained model.

In the previous chapter, we covered the interpretabil-
ity of machine learning models, and this is an important 
requirement in data mining. People who use the predic-
tive models do not always know machine learning, so it is 
important that whatever is learned from the data be pre-
sented in a form that is understandable by them. In many 
data mining scenarios—for example, in credit scoring—
this process of knowledge extraction and model assess-
ment by people may be important and even necessary in 
validating the model trained from data.

Visualization tools can also help here. Actually, visual-
ization is one of the best tools for data analysis, and some-
times just visualizing the data in a smart way is enough to 
understand the characteristics of the process that under-
lies a complicated data set, without any need for further 
complex and costly statistical processing; see Börner 2015 
for examples.

As we have more data and more computing power, we 
can attempt more complicated data mining tasks that try 
to discover hidden relationships in more complex scenar-
ios. Most data mining tasks today work in a single domain 
using a single source of data. Especially interesting is the 
case where we have data from different sources in different 
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modalities; mining such data and finding dependencies 
across sources and modalities is a promising research 
direction.

Data Science

The advances and successes of machine learning meth-
ods on big data and the promise of more have prompted 
researchers and practitioners in the industry to call this 
endeavor a new branch of science and engineering. There 
are still discussions about what this new field of data sci-
ence should cover, but it seems as if the major topics are 
machine learning, high-performance computing, and the 
social, ethical, and legal implications of data collection, 
analysis, and data-driven decision making.

Of course, not all learning applications need a cloud, or 
a data center, or a cluster of computers. One should always 
be wary of hype and companies’ sale strategies to invent 
new and fancier names under which to sell old products.

However, when there is a lot of data and the process 
involves a lot of computation, efficient implementation 
of machine learning solutions is an important matter.2 
Another integral part is the ethical and legal implications 
of data analysis and processing, as we discussed in chap-
ter 7. As we collect and analyze more and more data, our 
decisions in various domains will become more and more 
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automated and data-driven, and we need to be concerned 
about the implications of such autonomous processes and 
the decisions they make.

It seems as if we will need many “data scientists” and 
“data engineers” in the future, because we see today that 
the importance of data and extracting information from 
data has been noticed in many domains. Such scenarios 
have characteristics that are drastically different than 
those of traditional statistics applications.

First, the data now is much bigger—consider all the 
transactions done at a supermarket chain. For each in-
stance, we have thousands of attributes—consider a gene 
sequence. The data is not just numbers anymore; it con-
sists of text, image, audio, video, ranks, frequencies, gene 
sequences, sensor arrays, click logs, lists of recommenda-
tions, and so on. Most of the time data does not obey the 
parametric assumptions, such as the bell-shaped Gauss-
ian curve, that we frequently use to make estimation eas-
ier. Instead, with the new data, we need to resort to more 
flexible nonparametric models whose complexity can ad-
just automatically to the complexity of the task underlying 
the data. All these requirements make machine learning 
more challenging than statistics as we used to know and 
practice it.

In education, this implies that we need to extend the 
courses on statistics to cover these additional needs, and 
teach more than the well-known but now insufficient, 
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mostly univariate (having a single input attribute) para-
metric methods for estimation, hypothesis testing, and 
regression. It has also become necessary to teach the basics 
of high-performance computing, both the hardware and 
the software aspects, because in real-world applications 
how efficiently the data is stored and manipulated may be 
as critical as the prediction accuracy. A student of data sci-
ence today also needs to know the social, ethical, and legal 
aspects of all stages of machine learning, including the col-
lection of data, its storage and processing, and automated 
decision making based on that data.

Machine Learning, Artificial Intelligence, and the Future

Machine learning is one way to achieve artificial intelli-
gence. By training on a data set, or by repeated trials using 
reinforcement learning, we can have a computer program 
behaving so as to maximize a performance criterion, which 
in a certain context appears intelligent.

One important point is that intelligence is a vague term  
and its applicability to assess the performance of com
puter systems may be misleading. For example, evaluating 
computers on tasks that are difficult for humans, such as 
playing chess, is not a good idea for assessing intelligence. 
Chess is a difficult task for humans because it requires 
deliberation and planning, whereas humans, just like  
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other animals, have evolved to make very quick decisions 
using limited sensory data with limited computation. For 
a computer, it is much more difficult to recognize the face 
of its opponent than to play chess. Whether a computer 
can play chess better than the best human player is not 
a good indicator that computers are more intelligent, be-
cause human intelligence has not evolved for tasks like 
chess.

Researchers use game playing as a testing area in 
artificial intelligence because games are relatively easy to 
define with their formal rules and clearly specified criteria 
for winning and losing. There are a certain number of 
pieces or cards, and even if there is randomness its form 
is well defined: the dice should be fair and draws from 
the deck should be uniform. Attempts to the contrary 
are considered cheating behavior. In real life, all sorts of 
randomness occur, and for its survival every species is 
slowly evolving to be a better cheater than the rest.

The power that artificial intelligence promises is a con-
cern for many researchers, and not surprisingly there is a 
call for regulation. In a recent interview (Bohannon 2015), 
Stuart Russell, a prominent researcher and coauthor of 
the leading textbook on artificial intelligence (Russell and 
Norvig 2020), says that unlimited intelligence may be as 
dangerous as unlimited energy and that uncontrolled arti-
ficial intelligence may be as dangerous as nuclear weap-
ons. The challenge is to make sure that this new source of 



224    chapter 8

intelligence is used for good and not for bad, to increase 
the well-being of people and for the benefit of humanity, 
rather than to increase the profit of a few.

Some people jump to conclusions and fear that research 
on artificial intelligence may one day lead to metallic mon-
sters that will rise to dominate us—electronic versions of 
the creation of Dr. Frankenstein. I doubt whether that will 
ever happen. But even today we have automatic systems 
that make decisions for us—some of which may be trained 
from data—in various applications from cars to trading. 
I believe we have more reason to fear the poorly pro-
grammed or poorly trained software than we do to dread 
the possibility of the dawn of super-intelligent machines.

Closing Remarks

We have big data, but tomorrow’s data will be bigger. Our 
sensors are getting cheaper and hence being used more 
widely and more precisely. Computers are getting bigger 
too, in terms of their computing power. We still seem to be 
far from the limits imposed by physics as researchers find 
new technologies and materials, such as the graphene, that 
promise to deliver more. New products can be designed 
and produced much faster using 3D printing technology 
and more of these products will need to be smart.
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With more data and computation, our trained models 
can get more and more intelligent. Current deep networks 
can learn enough abstraction in some limited context to 
recognize handwritten digits or a subset of objects, but 
they are far from having the capability of our visual cortex 
to recognize a scene—one deep network does not a brain 
make. They can learn some linguistic abstraction from 
large bodies of text, but we are far from any real under-
standing of it—enough, for example, to answer questions 
about a short story. How our learning algorithms will scale 
up is an open question. That is, can we train a model that is 
as good as the visual cortex by adding more and more lay-
ers to a deep network and training it with more and more 
data? Can we get a model to translate from one language 
to another by having a very large model trained with a lot 
of data? The answer should be yes, because our brains are 
such models. But this scaling up may be increasingly dif-
ficult. Even though we are born with the specialized hard-
ware, it still takes years of observing our environment 
before we utter our first sentence.

In vision, as we go from barcode to optical charac-
ter readers to face recognizers, we define a sequence of 
increasingly complex tasks, each of which solves a need 
and each of which is a marketable product in its own 
time. More than scientific curiosity, it is this process of 
capitalization that fuels research and development. As our 
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learning systems get more intelligent, they will find use in 
increasingly smarter products and services.

In the last half century, we have seen that as com-
puters find new applications in our lives, they have also 
changed our lives to make computation easier. Similarly, 
as our devices get smarter, the environment in which we 
live, and our lives in it, will change. Each age uses its cur-
rent technology, which defines an environment with its 
constraints, and these propel new inventions and new 
technologies. If we can go back two thousand years and 
somehow give Romans the cell phone technology, I doubt 
that it would greatly enhance their quality of life, when 
they were still riding horses, that is, when the rest of 
their lives did not match up. The world when we will need 
human-level intelligence in machines will be a very differ-
ent world.

When will we reach that level of intelligence and how 
much processing and training will be required are yet to 
be seen. Currently machine learning seems to be the most 
promising way to achieve it, so stay tuned.



Adversarial example
A slightly perturbed example that causes a big change at the output. Adver-
sarial examples are an indicator that the model’s response is very much special-
ized to the training examples, and that the model has not correctly generalized.

Anonymization
Removal or hiding of information such that the source cannot be uniquely 
identified. It is not as straightforward as one would think.

Artificial intelligence
Programming computers to do things, which, if done by humans, would be 
said to require “intelligence.” It is a human-centric and ambiguous term: call-
ing computers “artificially intelligent” is like calling driving “artificial running.”

Association rules
If-then rules associating two or more items in basket analysis. For example, 

“People who buy diapers frequently also buy beer.”

Autoencoder network
A type of neural network that is trained to reconstruct its input at its output. 
Because there are fewer intermediary hidden units than inputs, the network is 
forced to learn a short, compressed representation at the hidden units, which 
can be interpreted as a process of abstraction.

Backpropagation
A learning algorithm for artificial neural networks used for supervised learning, 
where connection weights are iteratively updated to decrease the approxima-
tion error at the output units.

Bag of words
A method for document representation where we preselect a lexicon of N 
words and we represent each document by a list of length N where element i 
is 1 if word i exists in the document and is 0 otherwise.

GLOSSARY
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Basket analysis
A basket is a set of items purchased together (e.g., in a supermarket). Basket 
analysis is finding items frequently occurring in the same basket. Such depen-
dencies between items are represented by association rules.

Bayes’ rule
One of the pillars of probability theory where for two or more random vari-
ables that are not independent, we write conditional probability in one direc-
tion in terms of the conditional probability in the other direction:

P(B|A) = P(A|B)P(B)/P(A).

It is used, for example, in diagnosis where we are given P(A|B) and B is the 
cause of A. Calculating P(B|A) allows a diagnostics—that is, the calculation of 
the probability of the cause B given the symptoms A.

Bayesian estimation
A method for parameter estimation where we use not only the sample, but also 
the prior information about the unknown parameters given by a prior distribu-
tion. This is combined with the information in the data to calculate a posterior 
distribution using Bayes’ rule.

Bayesian network
See graphical model.

Behavioral cloning
One way of doing imitation learning where we observe how a human is solving 
the task step by step and each step is learned in a supervised manner; the robot 
learns to copy the human behavior exactly—that is, what the correct action is 
for each intermediate stage.

Bioinformatics
Computational methods, including those that use machine learning, for ana-
lyzing and processing biological data.

Biometrics
Recognition or authentication of people using their physiological character-
istics (e.g., face, fingerprint) and behavioral characteristics (e.g., signature,  
gait).
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Character recognition
Recognizing printed or handwritten text. In optical recognition, the input is 
visual and is sensed by a camera or scanner. In pen-based recognition, the writ-
ing is done on a touch-sensitive surface and the input is a temporal sequence 
of coordinates of the pen tip.

Class
A set of instances having the same identity. For example, ‘A’ and ‘A’ belong to 
the same class. In machine learning, for each class we learn a discriminant from 
the set of its examples.

Classification
Assignment of a given instance to one of a set of classes.

Cloud computing
A recent paradigm in computing where data and computation are not local but 
handled in some remote off-site data center. Typically there are many such 
data centers, and the tasks of different users are distributed over them in a way 
invisible to the user. This was previously called grid computing.

Clustering
Grouping of similar instances into clusters. This is an unsupervised learning 
method because the instances that form a cluster are found based on their 
similarity to each other, as opposed to a classification task where the supervisor 
assigns instances to classes by explicitly labeling them.

Connectionism
A neural network approach in cognitive science where mind is modeled as the 
operation of a network of many simple processing units running in parallel. 
Also known as parallel distributed processing.

Cyber-physical systems
Computational elements directly interacting with the physical world. Some 
may be mobile. They may be organized as a network to handle the task in a 
collaborative manner. Also known as embedded systems.

Data analysis
Computational methods for extracting information from large amounts of 
data. Data mining uses machine learning and is more data-driven; OLAP is 
more user-driven.
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Data mining
Machine learning and statistical methods for extracting information from 
large amounts of data. For example, in basket analysis, by analyzing large num-
ber of transactions, we find association rules.

Data science
A recently proposed field in computer science and engineering composed of 
machine learning, high performance computing, and social, ethical, and legal 
aspects of data collection and analysis. Data science is proposed to handle in 
a systematic way the “big data” problems that face us today in many different 
scenarios.

Data warehouse
A subset of data selected, extracted, and organized for a specific data analysis 
task. The original data may be very detailed and may lie in several different 
operational databases. The warehouse merges and summarizes them. The 
warehouse is read-only; it is used to get a high-level overview of the process 
that underlies the data either through OLAP and visualization tools, or by 
data mining software.

Database
Software for storing and processing digitally represented information 
efficiently.

Decision tree
A hierarchical model composed of decision nodes and leaves. The decision tree 
works fast, and it can be converted to a set of if-then rules, and as such allows 
knowledge extraction.

Deep learning
Methods that are used to train models with several levels of abstraction from 
the raw input to the output. For example, in visual recognition, the lowest 
level is an image composed of pixels. In layers as we go up, a deep learner 
combines them to form strokes and edges of different orientations, which can 
then be combined to detect longer lines, arcs, corners, and junctions, which 
in turn can be combined to form rectangles, circles, and so on. The units 
of each layer may be thought of as a set of primitives at a different level of  
abstraction.
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Deep Q-Network
A deep neural network trained end to end with Q-learning.

Dimensionality reduction
Methods for decreasing the number of input attributes. In an application, 
some of the inputs may not be informative, and some may correspond to dif-
ferent ways of giving the same information. Reducing the number of inputs 
also reduces the complexity of the learned model and makes training easier. 
See feature selection and feature extraction.

Discriminant
A rule that defines the conditions for an instance to be an element of a class 
and as such separates them from instances of other classes.

Document categorization
Classification of text documents, generally based on the words that occur in 
the text (e.g., using bag of words representation). For instance, news docu-
ments can be classified as politics, arts, sports, and so on; emails can be classi-
fied as spam versus not-spam.

Edge computing
Processing data at the “edge,” that is, where the data is collected, instead of 
sending it to the cloud to be processed. It leads to fast response and decreased 
network traffic. This is an idea similar to fog computing.

Embedded systems
See cyber-physical systems.

Face recognition
Recognizing people’s identities from their face images captured by a camera.

Feature extraction
As a method for dimensionality reduction, several original inputs are combined 
to define new, more informative features.

Feature selection
A method that discards the uninformative features and keeps only those that 
are informative; it is used for dimensionality reduction.
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Fog computing
A fog is like a cloud, but it is smaller and local. The cloud can be far; but the 
machines that make up the fog are local, therefore they lead to faster response; 
the idea is similar to edge computing.

Gating unit
A unit that opens or closes another connection depending on its input. It thus 
allows selectively turning on/off parts of a neural network.

Generalization
How well a model trained on a training set performs on new data unseen dur-
ing training. This is at the core of machine learning. In an exam, a teacher asks 
questions that are different from the exercises already solved while teaching 
the course, and students’ performance is measured by their performance on 
these new questions. A student who can solve only the questions that the 
instructor has solved in class is not good enough.

Generative model
A model defined in such a way so as to represent the way we believe the data 
has been generated. We think of hidden causes that generate the data and also 
of higher-level hidden causes. Slippery roads may cause accidents, and rain 
may have caused roads to be slippery.

Generative adversarial network
This is actually made up of two networks, a generator G and a discriminator D. 
G generates a “fake” instance from a random input and D is trained to separate 
such fakes from true examples. G is in turn trained to generate fakes that D will 
classify as true, which will force D to get better at spotting fakes, which will in 
turn cause G to be a better faker, and so on.

Graphical model
A model representing dependencies between probabilistic concepts. Each 
node is a concept with a different truth degree and a connection between 
nodes represents a conditional dependency. If I know that the rain causes my 
grass to get wet, I define one node for rain and one node for wet grass, and I 
put a directed connection from the rain node to the node for wet grass. Proba-
bilistic inference on such networks may be implemented as efficient graph 
algorithms. Such a network is a visual representation and helps understand-
ing. Also known as a Bayesian network—one rule of inference used in such 
networks is Bayes’ rule.
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High-performance computing
To handle the big data problems we have today in reasonable time, we need 
powerful computing systems, both for storage and calculation. The field of 
high-performance computing includes work along these directions; one ap-
proach is cloud computing.

If-then rules
Decision rules written in the form of “IF antecedent THEN consequent.” The 
antecedent is a logical condition and if holds true for the input, the action in 
the consequent is carried out. In supervised learning, the consequent corre-
sponds to choosing a certain output. A rule base is composed of many if-then 
rules. A model that can be written as a set of if-then rules is easy to understand 
and hence rule bases allow knowledge extraction.

Ill-posed problem
A problem where the data is not sufficient to find a unique solution. Fitting a 
model to data is an ill-posed problem, and we need to introduce inductive bias 
to get a final model.

Imitation learning
In robotics, this means training a robot to imitate a human doing the task.

Induction
Learning a general model from particular examples, for example, learning the 
general concept of a chair from all the chairs one sees.

Inductive bias
The set of assumptions that each machine learning algorithm makes, in addi-
tion to the data, to learn a model.

Information retrieval
Given a database of many records, we make a query and we want the records 
relevant to be found. For example, given a database of news articles, we can 
make a query using keywords.

Inverse reinforcement learning
As a method for imitation learning, the idea is to first an extract reward func-
tion by observing the way a human is solving a task; once such a reward func-
tion is extracted, we can use reinforcement learning proper.
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Knowledge extraction
In some applications, notably in data mining, after training a model, we would 
like to be able to understand what the model has learned; this can be used 
for validating the model by people who are experts in that application, and 
it also helps to understand the process that generated the data. Some models 
are “black box” in that they are not easy to understand; some models—for 
example, linear models and decision trees—are interpretable and allow ex-
tracting knowledge from a trained model.

Latent semantic analysis
A learning method where the aim is to find a small set of hidden (latent) 
variables that represent the dependencies in a large sample of observed data. 
Such hidden variables may correspond to abstract (e.g., semantic) concepts. 
For example, each news article can be said to include a number of “topics,” 
and although this topic information is not given explicitly in a supervised way 
in the data, we can learn them from data such that each topic is defined by 
a particular set of words and each news article is defined by a particular set  
of topics.

Model
A template formalizing the relationship between an input and an output. Its 
structure is fixed but it also has parameters that are modifiable; the parameters 
are adjusted so that the same model with different parameters can be trained 
on different data to implement different relationships in different tasks.

Natural language processing
Computer methods used to process human language, also called computa-
tional linguistics.

Nearest-neighbor methods
Models where we interpret an instance in terms of the most similar training 
instances. They use the most basic assumption: similar inputs have similar 
outputs. They are also called instance-, memory-, or case-based methods.

Neural network
A model composed of a network of simple processing units called neurons and 
connections between neurons called synapses. Each synapse has a direction 
and a weight, and the weight defines the effect of the neuron before on the 
neuron after.
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Nonparametric methods
Statistical methods that do not make strong assumptions about the proper-
ties of the data. Hence they are more flexible, but they may need more data to 
sufficiently constrain them.

Occam’s razor
A philosophical heuristic that advises us to prefer simple explanations to com-
plicated ones.

Online analytical processing (OLAP)
Data analysis software used to extract information from a data warehouse. 
OLAP is user-driven, in the sense that the user thinks of some hypotheses 
about the process and using OLAP tools checks whether the data supports 
those hypotheses. Machine learning is more data-driven in the sense that au-
tomatic data analysis can find dependencies not previously thought by users.

Outlier detection
An outlier, anomaly, or novelty is an instance that is very different from other 
instances in the sample. In certain applications such as fraud detection, we are 
interested in such outliers that are the exceptions to the general rules.

Parallel distributed processing
A computational paradigm where the task is divided into smaller concurrent 
tasks, each of which can be run on a different processor. By using more proces-
sors, the overall computation can be done much faster.

Parametric methods
Statistical methods that make strong assumptions about data. The advantage 
is that if the assumption holds, they are very efficient in terms of computation 
and data; the risk is that those assumptions do not always hold.

Pattern recognition
A pattern is a particular configuration of data; for example, ‘A’ is a composition 
of three strokes. Pattern recognition is the detection of such patterns.

Perceptron
A perceptron is a type of a neural network organized into layers where each 
layer receives connections from units in the previous layer and feeds its output 
to the units of the layer that follow.
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Population
The set of all possible observable values for a random experiment, a sample is 
a random subset of the population.

Posterior distribution
The distribution of possible values that an unknown parameter can take after 
looking at the data. Bayes’ rule allows us to combine the prior distribution and 
the data to calculate the posterior distribution.

Precision and recall
Measures used to evaluate an information retrieval system. Precision is the ratio 
of the number of retrieved and relevant records to the number of retrieved 
records, and recall is the ratio of the number of retrieved and relevant records 
to the relevant records.

Prior distribution
The distribution of possible values that an unknown parameter can take before 
looking at the data. For example, before estimating the average weight of high 
school students, we may have a prior belief that it will be between 100 and 200 
pounds. Such information is especially useful if we have little data.

Q-learning
A reinforcement learning method based on temporal difference learning, where 
the goodness values of actions in states are stored in a table (or function), 
frequently denoted by Q.

Ranking
This is a task somewhat similar to regression, but we care only whether the 
outputs are in the correct order. For example, for two movies A and B, if the 
user enjoyed A more than B, we want the score estimate to be higher for A than 
for B. There are no absolute score values as we have in regression, but only a 
constraint on their relative values.

Recurrent connection
A type of connection that involves a delay and acts as a short-term memory 
helping the network to remember its past. The advantage is that the network’s 
output depends not only on its current input but also on the inputs it has seen 
in previous time steps.
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Regression
Estimating a numeric value for a given instance. For example, estimating the 
price of a used car given the attributes of the car is a regression problem.

Reinforcement learning
It is also known as learning with a critic. The agent takes a sequence of actions 
and receives a reward/penalty only at the very end, with no feedback during 
the intermediate actions. Using this limited information, the agent should 
learn to generate the actions to maximize the reward in later trials. For ex-
ample, in chess, we do a set of moves, and at the very end, we win or lose the 
game; so we need to figure out what the actions that led us to this result were 
and correspondingly credit them.

Sample
A set of observed data. In statistics, we make a difference between a population 
and a sample. Let us say we want to do a study on obesity in high school stu-
dents. The population is all the high school students, but we cannot possibly 
observe the weights of all. Instead, we choose a random subset of, for example, 
1,000 students and observe their weights. Those 1,000 values are our sample. 
We analyze the sample to make inferences about the population. Any value we 
calculate from the sample is a statistic. For example, the average of the weights 
of the 1,000 students in the sample is a statistic and is an estimator for the 
mean of the population.

Smart device
A device that has its sensed data represented digitally and is doing some com-
putation on this data. The device may be mobile and it may be online; that is, 
it may have the ability to exchange data with other smart devices, computers, 
or the cloud.

Speech recognition
Recognizing uttered sentences from acoustic information captured by a 
microphone.

Supervised learning
A type of machine learning where the model learns to generate the correct 
output for any input. The model is trained with data prepared by a supervisor 
who can provide the desired output for a given input. Classification and regres-
sion are examples of supervised learning.
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Temporal difference learning
A set of methods for reinforcement learning where learning is done by backing 
up the goodness of the current action to the one that immediately precedes it. 
An example is the Q-learning algorithm.

Transfer learning
Using a model, completely or partially, trained on task A to be used in solving 
task B. When used in neural networks, this corresponds to using some of the 
layers of the network trained on A also in the network to be trained for B. This 
can be done if A and B are similar tasks, and is especially useful if we have more 
data for A than for B.

Validation
Testing the generalization performance of a trained model by testing it on data 
unseen during training. Typically in machine learning, we leave some of our 
data out as validation data, and after training we test it on this left out data. 
This validation accuracy is an estimator for how well the model is expected to 
perform when used later on in real life.

Web scraping
Software that automatically surfs the web and extracts information from web 
pages.



NOTES

Preface
1.  “Go Master Lee says he quits unable to win over AI Go players.” Yonhap 
News Agency, November 27, 2019. https://en.yna.co.kr/view/AEN2019 
1127004800315 (accessed January 29, 2020).

Chapter 1
1.  These use the ASCII code devised for the English alphabet and punctuation. 
The character-encoding schemes we use today cover the different alphabets of 
different languages.
2.  In building portable electronic devices, such as notebook computers, music 
players, and smartphones, the development of rechargeable lithium-ion bat-
teries was crucial. The 2019 Nobel Prize in chemistry went to three researchers 
who made this technology possible.
3.  It is not the computing power, storage capacity, or connectivity that by 
themselves produce added value, just as a higher population does not neces-
sarily imply a larger workforce. The enormous number of smartphones in the 
developing countries does not translate to wealth.
4.  A computer program is composed of an algorithm for the task and data 
structures for the digital representation of the processed information. The 
title of a seminal book on computer programming is just that: Algorithms + 
Data Structures = Programs (Wirth 1976).
5.  Early scientists believed that the existence of rules that explain the physi-
cal world is a sign of an ordered universe, which could only be due to a god. 
Observing nature and trying to fit rules to natural phenomena has an old his-
tory, starting in ancient Mesopotamia. Early on, pseudoscience could not be 
separated from science. In hindsight, the fact that the ancient people believed 
in astrology is not surprising: If there are regularities and rules about the 
movement of the sun and the moon, which can be used to predict eclipses 
for example, positing the existence of regularities and rules about the move-
ment of human beings, which seem so petty in comparison, does not sound  
far-fetched.

Chapter 2
1.  See https://en.wikipedia.org/wiki/Depreciation.

https://en.yna.co.kr/view/AEN20191127004800315
https://en.yna.co.kr/view/AEN20191127004800315
https://en.wikipedia.org/wiki/Depreciation
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2.  Such smoothness assumptions are also frequently used in image processing. 
For example, when scientists first captured the image of a black hole in 2019, 
they used the Event Horizon Telescope, which is actually a combination of a 
number of telescopes around the world each capable of recording only a small 
part. Smoothness constraints are used to put those pieces together to get the 
complete image, just like in the illusion of the Kanizsa triangle where we can 
imagine a complete large triangle even though what we actually see are just 
small pieces of it.
3.  For an excellent history of artificial intelligence, see Nilsson 2009.
4.  See Sandel 2012 for some real-life scenarios where decision making based 
on expected value, or expected utility, may not be the best way. Pascal’s wager 
is another example of the application of expected value calculation in an area 
where it should not be applied.

Chapter 3
1.  Here, we are talking about optical character recognition where the input is 
an image; there is also pen-based character recognition where the writing is 
done on a touch-sensitive pad. In such a case, the input is not an image but a 
sequence of the (x,y) coordinates of the stylus tip, while the character is writ-
ten on the touch-sensitive surface.
2.  Let us say F represents the flu and N represents a runny nose. Using Bayes’ 
rule, we can write the probability that a person has the flu given that we know 
they have a runny nose:

P(F|N) = P(N|F)P(F)/P(N),

Here, P(N|F) is the conditional probability in the other direction, namely, 
that a patient has a runny nose given that they are known to have the flu. P(F) 
is the probability that a patient has the flu, regardless of whether they have a 
runny nose or not, and P(N) is the probability that a patient has a runny nose, 
regardless of whether they have the flu or not.
3.  It is interesting that in many science fiction movies, though the robots 
may be very advanced in terms of vision, speech recognition, and autonomous 
movement, they still continue to speak in an emotionless, “robotic” voice.
4.  This is due to Condorcet’s Jury Theorem, which states that in a group that 
decides by majority voting, if each voter has an independent probability p of 
voting for the correct decision, for any p > ½ (better than randomly guessing), 
the probability that the majority vote is correct approaches 1 as the number 
of voters increase. This is why democracy is better than monarchy (Marquis de 
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Condorcet supported the French Revolution, though he was later treated as a 
traitor and sent to prison where he died), but only if the voters can form their 
own opinions independently, and that is where concepts such as freedom of 
press and freedom of expression come into play.

Another implication is the advantage of countries that are tolerant to 
differences, or are open to individuals from different backgrounds, such as 
immigrants, knowing that differences are a source of diversity and hence of 
new ideas. Historically speaking, we see that creativity, artistic or scientific, is 
highest in either countries that were trading nations continuously interacting 
with different cultures, or countries that were welcoming to immigrants. It is 
always said that creativity requires being able to “think outside the box”; the 
more different people are, the less their boxes overlap, and meeting different 
people enlarges one’s box.
5.  Bayesian estimation uses Bayes’ rule in probability theory (which we saw 
before) named after Thomas Bayes (1702–1761) who was a Presbyterian min-
ister. The assumption of a prior that exists before and underlies the observable 
data should have come naturally with the job.

Chapter 4
1.  Check thispersondoesnotexist.com for example face images generated by 
a GAN.

Chapter 7
1.  Quoted in “Human Rights and Technology” discussion paper, Australian 
Human Rights Commission, December 2019, 75, https://www.humanrights 

.gov.au/our-work/rights-and-freedoms/publications/human-rights-and-technology 
-discussion-paper-2019.

Chapter 8
1.  The speed of light is approximately 300,000 km/sec, so it takes at least 
3.33 milliseconds to traverse 1,000 km—distance to a data center. This is not 
actually such a small number with electronic devices. The connection is never 
direct and there are always delays due to intermediate routing devices; and 
remember that to get a response, we need to send a query first, so we need to 
double the time.
2.  For more, see Frontiers in Massive Data Analysis (Washington, DC: National 
Academies Press, 2013).

http://thispersondoesnotexist.com
https://www.humanrights.gov.au/our-work/rights-and-freedoms/publications/human-rights-and-technology-discussion-paper-2019
https://www.humanrights.gov.au/our-work/rights-and-freedoms/publications/human-rights-and-technology-discussion-paper-2019
https://www.humanrights.gov.au/our-work/rights-and-freedoms/publications/human-rights-and-technology-discussion-paper-2019
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